This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1342

2019 All-Russian Olympiad, 5

In a kindergarten, a nurse took $n$ congruent cardboard rectangles and gave them to $n$ kids, one per each. Each kid has cut its rectangle into congruent squares(the squares of different kids could be of different sizes). It turned out that the total number of the obtained squares is a prime number. Prove that all the initial squares were in fact squares.

2011 AMC 12/AHSME, 23

A bug travels in the coordinate plane, moving only along the lines that are parallel to the $x$-axis or $y$-axis. Let $A=(-3, 2)$ and $B=(3, -2)$. Consider all possible paths of the bug from $A$ to $B$ of length at most $20$. How many points with integer coordinates lie on at least one of these paths? $ \textbf{(A)}\ 161 \qquad \textbf{(B)}\ 185 \qquad \textbf{(C)}\ 195 \qquad \textbf{(D)}\ 227 \qquad \textbf{(E)}\ 255 $

Novosibirsk Oral Geo Oly IX, 2017.5

Point $K$ is marked on the diagonal $AC$ in rectangle $ABCD$ so that $CK = BC$. On the side $BC$, point $M$ is marked so that $KM = CM$. Prove that $AK + BM = CM$.

1986 China Team Selection Test, 1

If $ABCD$ is a cyclic quadrilateral, then prove that the incenters of the triangles $ABC$, $BCD$, $CDA$, $DAB$ are the vertices of a rectangle.

2008 AMC 12/AHSME, 16

A rectangular floor measures $ a$ by $ b$ feet, where $ a$ and $ b$ are positive integers with $ b > a$. An artist paints a rectangle on the floor with the sides of the rectangle parallel to the sides of the floor. The unpainted part of the floor forms a border of width $ 1$ foot around the painted rectangle and occupies half of the area of the entire floor. How many possibilities are there for the ordered pair $ (a,b)$? $ \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

2007 IMO Shortlist, 5

In the Cartesian coordinate plane define the strips $ S_n \equal{} \{(x,y)|n\le x < n \plus{} 1\}$, $ n\in\mathbb{Z}$ and color each strip black or white. Prove that any rectangle which is not a square can be placed in the plane so that its vertices have the same color. [b]IMO Shortlist 2007 Problem C5 as it appears in the official booklet:[/b] In the Cartesian coordinate plane define the strips $ S_n \equal{} \{(x,y)|n\le x < n \plus{} 1\}$ for every integer $ n.$ Assume each strip $ S_n$ is colored either red or blue, and let $ a$ and $ b$ be two distinct positive integers. Prove that there exists a rectangle with side length $ a$ and $ b$ such that its vertices have the same color. ([i]Edited by Orlando Döhring[/i]) [i]Author: Radu Gologan and Dan Schwarz, Romania[/i]

2010 Contests, 1

A circle that passes through the vertex $A$ of a rectangle $ABCD$ intersects the side $AB$ at a second point $E$ different from $B.$ A line passing through $B$ is tangent to this circle at a point $T,$ and the circle with center $B$ and passing through $T$ intersects the side $BC$ at the point $F.$ Show that if $\angle CDF= \angle BFE,$ then $\angle EDF=\angle CDF.$

1991 AIME Problems, 12

Rhombus $PQRS$ is inscribed in rectangle $ABCD$ so that vertices $P$, $Q$, $R$, and $S$ are interior points on sides $\overline{AB}$, $\overline{BC}$, $\overline{CD}$, and $\overline{DA}$, respectively. It is given that $PB=15$, $BQ=20$, $PR=30$, and $QS=40$. Let $m/n$, in lowest terms, denote the perimeter of $ABCD$. Find $m+n$.

1998 National Olympiad First Round, 27

For which of the following $ n$, $ n\times n$ chessboard cannot be covered using at most one unit square piece and many L-shaped pieces (an L-shaped piece is a 2x2 piece with one square removed)? $\textbf{(A)}\ 96 \qquad\textbf{(B)}\ 97 \qquad\textbf{(C)}\ 98 \qquad\textbf{(D)}\ 99 \qquad\textbf{(E)}\ 100$

2005 Oral Moscow Geometry Olympiad, 1

Tags: geometry , rectangle , area
The hexagon has five $90^o$ angles and one $270^o$ angle (see picture). Use a straight-line ruler to divide it into two equal-sized polygons. [img]https://cdn.artofproblemsolving.com/attachments/d/8/cdd4df68644bb8e04adbe1b265039b82a5382b.png[/img]

2006 India Regional Mathematical Olympiad, 4

A $ 6\times 6$ square is dissected in to 9 rectangles by lines parallel to its sides such that all these rectangles have integer sides. Prove that there are always [b]two[/b] congruent rectangles.

1998 Tournament Of Towns, 2

A square of side $1$ is divided into rectangles . We choose one of the two smaller sides of each rectangle (if the rectangle is a square, then we choose any of the four sides) . Prove that the sum of the lengths of all the chosen sides is at least $1$ . (Folklore)

2013-2014 SDML (High School), 4

$ABCD$ is a rectangle. Segment $BA$ is extended through $A$ to a point $E$. Let the intersection of $EC$ and $AD$ be point $F$. Suppose that [the] measure of $\angle{ACD}$ is $60$ degrees, and that the length of segment $EF$ is twice the length of diagonal $AC$. What is the measure of $\angle{ECD}$?

1966 IMO Shortlist, 20

Given three congruent rectangles in the space. Their centers coincide, but the planes they lie in are mutually perpendicular. For any two of the three rectangles, the line of intersection of the planes of these two rectangles contains one midparallel of one rectangle and one midparallel of the other rectangle, and these two midparallels have different lengths. Consider the convex polyhedron whose vertices are the vertices of the rectangles. [b]a.)[/b] What is the volume of this polyhedron ? [b]b.)[/b] Can this polyhedron turn out to be a regular polyhedron ? If yes, what is the condition for this polyhedron to be regular ?

2008 May Olympiad, 2

Let $ABCD$ be a rectangle and $P$ be a point on the side$ AD$ such that $\angle BPC = 90^o$. The perpendicular from $A$ on $BP$ cuts $BP$ at $M$ and the perpendicular from $D$ on $CP$ cuts $CP$ in $N$. Show that the center of the rectangle lies in the $MN$ segment.

2002 Romania Team Selection Test, 3

Let $M$ and $N$ be the midpoints of the respective sides $AB$ and $AC$ of an acute-angled triangle $ABC$. Let $P$ be the foot of the perpendicular from $N$ onto $BC$ and let $A_1$ be the midpoint of $MP$. Points $B_1$ and $C_1$ are obtained similarly. If $AA_1$, $BB_1$ and $CC_1$ are concurrent, show that the triangle $ABC$ is isosceles. [i]Mircea Becheanu[/i]

2012 Korea National Olympiad, 1

Let $ ABC $ be an obtuse triangle with $ \angle A > 90^{\circ} $. Let circle $ O $ be the circumcircle of $ ABC $. $ D $ is a point lying on segment $ AB $ such that $ AD = AC $. Let $ AK $ be the diameter of circle $ O $. Two lines $ AK $ and $ CD $ meet at $ L $. A circle passing through $ D, K, L $ meets with circle $ O $ at $ P ( \ne K ) $ . Given that $ AK = 2, \angle BCD = \angle BAP = 10^{\circ} $, prove that $ DP = \sin ( \frac{ \angle A}{2} )$.

2010 Today's Calculation Of Integral, 531

(1) Let $ f(x)$ be a continuous function defined on $ [a,\ b]$, it is known that there exists some $ c$ such that \[ \int_a^b f(x)\ dx \equal{} (b \minus{} a)f(c)\ (a < c < b)\] Explain the fact by using graph. Note that you don't need to prove the statement. (2) Let $ f(x) \equal{} a_0 \plus{} a_1x \plus{} a_2x^2 \plus{} \cdots\cdots \plus{} a_nx^n$, Prove that there exists $ \theta$ such that \[ f(\sin \theta) \equal{} a_0 \plus{} \frac {a_1}{2} \plus{} \frac {a_3}{3} \plus{} \cdots\cdots \plus{} \frac {a_n}{n \plus{} 1},\ 0 < \theta < \frac {\pi}{2}.\]

1998 Turkey Team Selection Test, 1

Squares $BAXX^{'}$ and $CAYY^{'}$ are drawn in the exterior of a triangle $ABC$ with $AB = AC$. Let $D$ be the midpoint of $BC$, and $E$ and $F$ be the feet of the perpendiculars from an arbitrary point $K$ on the segment $BC$ to $BY$ and $CX$, respectively. $(a)$ Prove that $DE = DF$ . $(b)$ Find the locus of the midpoint of $EF$ .

1997 IMO Shortlist, 1

In the plane the points with integer coordinates are the vertices of unit squares. The squares are coloured alternately black and white (as on a chessboard). For any pair of positive integers $ m$ and $ n$, consider a right-angled triangle whose vertices have integer coordinates and whose legs, of lengths $ m$ and $ n$, lie along edges of the squares. Let $ S_1$ be the total area of the black part of the triangle and $ S_2$ be the total area of the white part. Let $ f(m,n) \equal{} | S_1 \minus{} S_2 |$. a) Calculate $ f(m,n)$ for all positive integers $ m$ and $ n$ which are either both even or both odd. b) Prove that $ f(m,n) \leq \frac 12 \max \{m,n \}$ for all $ m$ and $ n$. c) Show that there is no constant $ C\in\mathbb{R}$ such that $ f(m,n) < C$ for all $ m$ and $ n$.

2000 AMC 10, 18

Charlyn walks completely around the boundary of a square whose sides are each $5$ km long. From any point on her path she can see exactly $1$ km horizontally in all directions. What is the area of the region consisting of all points Charlyn can see during her walk, expressed in square kilometers and rounded to the nearest whole number? $\text{(A)}\ 24 \qquad\text{(B)}\ 27\qquad\text{(C)}\ 39\qquad\text{(D)}\ 40 \qquad\text{(E)}\ 42$

2005 Harvard-MIT Mathematics Tournament, 5

A cube with side length $2$ is inscribed in a sphere. A second cube, with faces parallel to the first, is inscribed between the sphere and one face of the first cube. What is the length of a side of the smaller cube?

2008 Switzerland - Final Round, 7

An $8 \times 11$ rectangle of unit squares somehow becomes disassembled into $21$ contiguous parts . Prove that at least two of these parts, except for rotations and reflections have the same shape.

1999 ITAMO, 1

A rectangular sheet with sides $a$ and $b$ is fold along a diagonal. Compute the area of the overlapping triangle.

1998 May Olympiad, 2

There are $1998$ rectangular pieces $2$ cm wide and $3$ cm long and with them squares are assembled (without overlapping or gaps). What is the greatest number of different squares that can be had at the same time?