This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

1953 Moscow Mathematical Olympiad, 254

Given a $101\times 200$ sheet of graph paper, we start moving from a corner square in the direction of the square’s diagonal (not the sheet’s diagonal) to the border of the sheet, then change direction obeying the laws of light’s reflection. Will we ever reach a corner square? [img]https://cdn.artofproblemsolving.com/attachments/b/8/4ec2f4583f406feda004c7fb4f11a424c9b9ae.png[/img]

1981 Putnam, A4

A point $P$ moves inside a unit square in a straight line at unit speed. When it meets a corner it escapes. When it meets an edge its line of motion is reflected so that the angle of incidence equals the angle of reflection. Let $N( t)$ be the number of starting directions from a fixed interior point $P_0$ for which $P$ escapes within $t$ units of time. Find the least constant $a$ for which constants $b$ and $c$ exist such that $$N(t) \leq at^2 +bt+c$$ for all $t>0$ and all initial points $P_0 .$

2007 Bulgaria National Olympiad, 1

The quadrilateral $ABCD$, where $\angle BAD+\angle ADC>\pi$, is inscribed a circle with centre $I$. A line through $I$ intersects $AB$ and $CD$ in points $X$ and $Y$ respectively such that $IX=IY$. Prove that $AX\cdot DY=BX\cdot CY$.

2017 Azerbaijan Team Selection Test, 2

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2009 China Team Selection Test, 1

Given that circle $ \omega$ is tangent internally to circle $ \Gamma$ at $ S.$ $ \omega$ touches the chord $ AB$ of $ \Gamma$ at $ T$. Let $ O$ be the center of $ \omega.$ Point $ P$ lies on the line $ AO.$ Show that $ PB\perp AB$ if and only if $ PS\perp TS.$

2010 Sharygin Geometry Olympiad, 21

A given convex quadrilateral $ABCD$ is such that $\angle ABD + \angle ACD > \angle BAC + \angle BDC.$ Prove that \[S_{ABD}+S_{ACD} > S_{BAC}+S_{BDC}.\]

1979 USAMO, 2

Let $S$ be a great circle with pole $P$. On any great circle through $P$, two points $A$ and $B$ are chosen equidistant from $P$. For any [i] spherical triangle [/i] $ABC$ (the sides are great circles ares), where $C$ is on $S$, prove that the great circle are $CP$ is the angle bisector of angle $C$. [b] Note. [/b] A great circle on a sphere is one whose center is the center of the sphere. A pole of the great circle $S$ is a point $P$ on the sphere such that the diameter through $P$ is perpendicular to the plane of $S$.

2009 Princeton University Math Competition, 3

A polygon is called concave if it has at least one angle strictly greater than $180^{\circ}$. What is the maximum number of symmetries that an 11-sided concave polygon can have? (A [i]symmetry[/i] of a polygon is a way to rotate or reflect the plane that leaves the polygon unchanged.)

2014 Contests, 1

Let $ABC$ be an acute triangle, and let $X$ be a variable interior point on the minor arc $BC$ of its circumcircle. Let $P$ and $Q$ be the feet of the perpendiculars from $X$ to lines $CA$ and $CB$, respectively. Let $R$ be the intersection of line $PQ$ and the perpendicular from $B$ to $AC$. Let $\ell$ be the line through $P$ parallel to $XR$. Prove that as $X$ varies along minor arc $BC$, the line $\ell$ always passes through a fixed point. (Specifically: prove that there is a point $F$, determined by triangle $ABC$, such that no matter where $X$ is on arc $BC$, line $\ell$ passes through $F$.) [i]Robert Simson et al.[/i]

2005 Romania National Olympiad, 3

Let $ABCD$ be a quadrilateral with $AB\parallel CD$ and $AC \perp BD$. Let $O$ be the intersection of $AC$ and $BD$. On the rays $(OA$ and $(OB$ we consider the points $M$ and $N$ respectively such that $\angle ANC = \angle BMD = 90^\circ$. We denote with $E$ the midpoint of the segment $MN$. Prove that a) $\triangle OMN \sim \triangle OBA$; b) $OE \perp AB$. [i]Claudiu-Stefan Popa[/i]

2019 Latvia Baltic Way TST, 12

Let $AX$, $AY$ be tangents to circle $\omega$ from point $A$. Le $B$, $C$ be points inside $AX$ and $AY$ respectively, such that perimeter of $\triangle ABC$ is equal to length of $AX$. $D$ is reflection of $A$ over $BC$. Prove that circumcircle $\triangle BDC$ and $\omega$ are tangent to each other.

2012 India IMO Training Camp, 1

Let $ABC$ be a triangle with $AB=AC$ and let $D$ be the midpoint of $AC$. The angle bisector of $\angle BAC$ intersects the circle through $D,B$ and $C$ at the point $E$ inside the triangle $ABC$. The line $BD$ intersects the circle through $A,E$ and $B$ in two points $B$ and $F$. The lines $AF$ and $BE$ meet at a point $I$, and the lines $CI$ and $BD$ meet at a point $K$. Show that $I$ is the incentre of triangle $KAB$. [i]Proposed by Jan Vonk, Belgium and Hojoo Lee, South Korea[/i]

1966 IMO Longlists, 49

Two mirror walls are placed to form an angle of measure $\alpha$. There is a candle inside the angle. How many reflections of the candle can an observer see?

2014 National Olympiad First Round, 21

Let $ABCD$ be a trapezoid such that side $[AB]$ and side $[CD]$ are perpendicular to side $[BC]$. Let $E$ be a point on side $[BC]$ such that $\triangle AED$ is equilateral. If $|AB|=7$ and $|CD|=5$, what is the area of trapezoid $ABCD$? $ \textbf{(A)}\ 27\sqrt{3} \qquad\textbf{(B)}\ 42 \qquad\textbf{(C)}\ 24\sqrt{3} \qquad\textbf{(D)}\ 40 \qquad\textbf{(E)}\ 36 $

2018 Korea Junior Math Olympiad, 5

Let there be an acute scalene triangle $ABC$ with circumcenter $O$. Denote $D,E$ be the reflection of $O$ with respect to $AB,AC$, respectively. The circumcircle of $ADE$ meets $AB$, $AC$, the circumcircle of $ABC$ at points $K,L,M$, respectively, and they are all distinct from $A$. Prove that the lines $BC,KL,AM$ are concurrent.

1988 Federal Competition For Advanced Students, P2, 5

The bisectors of angles $ B$ and $ C$ of triangle $ ABC$ intersect the opposite sides in points $ B'$ and $ C'$ respectively. Show that the line $ B'C'$ intersects the incircle of the triangle.

2009 Macedonia National Olympiad, 2

Let $O$ be the centre of the incircle of $\triangle ABC$. Points $K,L$ are the intersection points of the circles circumscribed about triangles $BOC,AOC$ respectively with the bisectors of the angles at $A,B$ respectively $(K,L\not= O)$. Also $P$ is the midpoint of segment $KL$, $M$ is the reflection of $O$ with respect to $P$ and $N$ is the reflection of $O$ with respect to line $KL$. Prove that the points $K,L,M$ and $N$ lie on the same circle.

2022 Azerbaijan JBMO TST, G3

In acute, scalene Triangle $ABC$, $H$ is orthocenter,$ BD$ and $CE$ are heights. $X,Y$ are reflection of $A$ from $D$,$E$ respectively such that the points$ X,Y$ are on segments $DC$ and $EB$. The intersection of circles $ HXY$ and $ADE$ is $F.$ ( $F \neq H$). Prove that$ AF$ intersects middle point of $BC$. ( $M$ in the diagram is Midpoint of $BC$)

2012 France Team Selection Test, 2

Let $ABC$ be an acute-angled triangle with $AB\not= AC$. Let $\Gamma$ be the circumcircle, $H$ the orthocentre and $O$ the centre of $\Gamma$. $M$ is the midpoint of $BC$. The line $AM$ meets $\Gamma$ again at $N$ and the circle with diameter $AM$ crosses $\Gamma$ again at $P$. Prove that the lines $AP,BC,OH$ are concurrent if and only if $AH=HN$.

MathLinks Contest 7th, 4.1

Let $ A,B,C,D,E$ be five distinct points, such that no three of them lie on the same line. Prove that \[ AB\plus{}BC\plus{}CA \plus{} DE < AD \plus{} AE \plus{} BD\plus{}BE \plus{} CD\plus{}CE .\]

2006 IMO Shortlist, 9

Points $ A_{1}$, $ B_{1}$, $ C_{1}$ are chosen on the sides $ BC$, $ CA$, $ AB$ of a triangle $ ABC$ respectively. The circumcircles of triangles $ AB_{1}C_{1}$, $ BC_{1}A_{1}$, $ CA_{1}B_{1}$ intersect the circumcircle of triangle $ ABC$ again at points $ A_{2}$, $ B_{2}$, $ C_{2}$ respectively ($ A_{2}\neq A, B_{2}\neq B, C_{2}\neq C$). Points $ A_{3}$, $ B_{3}$, $ C_{3}$ are symmetric to $ A_{1}$, $ B_{1}$, $ C_{1}$ with respect to the midpoints of the sides $ BC$, $ CA$, $ AB$ respectively. Prove that the triangles $ A_{2}B_{2}C_{2}$ and $ A_{3}B_{3}C_{3}$ are similar.

2019 Dutch Mathematical Olympiad, 3

Points $A, B$, and $C$ lie on a circle with centre $M$. The reflection of point $M$ in the line $AB$ lies inside triangle $ABC$ and is the intersection of the angle bisectors of angles $A$ and $B$. Line $AM$ intersects the circle again in point $D$. Show that $|CA| \cdot |CD| = |AB| \cdot |AM|$.

1995 India National Olympiad, 1

In an acute angled triangle $ABC$, $\angle A = 30^{\circ}$, $H$ is the orthocenter, and $M$ is the midpoint of $BC$. On the line $HM$, take a point $T$ such that $HM = MT$. Show that $AT = 2 BC$.

2006 South East Mathematical Olympiad, 2

In $\triangle ABC$, $\angle ABC=90^{\circ}$. Points $D,G$ lie on side $AC$. Points $E, F$ lie on segment $BD$, such that $AE \perp BD $ and $GF \perp BD$. Show that if $BE=EF$, then $\angle ABG=\angle DFC$.

2010 Contests, 1

For all natural $n$, an $n$-staircase is a figure consisting of unit squares, with one square in the first row, two squares in the second row, and so on, up to $n$ squares in the $n^{th}$ row, such that all the left-most squares in each row are aligned vertically. Let $f(n)$ denote the minimum number of square tiles requires to tile the $n$-staircase, where the side lengths of the square tiles can be any natural number. e.g. $f(2)=3$ and $f(4)=7$. (a) Find all $n$ such that $f(n)=n$. (b) Find all $n$ such that $f(n) = n+1$.