Found problems: 1001
2012 Online Math Open Problems, 44
Given a set of points in space, a [i]jump[/i] consists of taking two points, $P$ and $Q,$ and replacing $P$ with the reflection of $P$ over $Q$. Find the smallest number $n$ such that for any set of $n$ lattice points in $10$-dimensional-space, it is possible to perform a finite number of jumps so that some two points coincide.
[i]Author: Anderson Wang[/i]
2009 Argentina Team Selection Test, 3
Let $ ABC$ be a triangle, $ B_1$ the midpoint of side $ AB$ and $ C_1$ the midpoint of side $ AC$. Let $ P$ be the point of intersection ($ \neq A$) of the circumcircles of triangles $ ABC_1$ and $ AB_1C$. Let $ Q$ be the point of intersection ($ \neq A$) of the line $ AP$ and the circumcircle of triangle $ AB_1C_1$.
Prove that $ \frac{AP}{AQ} \equal{} \frac{3}{2}$.
2008 Iran Team Selection Test, 12
In the acute-angled triangle $ ABC$, $ D$ is the intersection of the altitude passing through $ A$ with $ BC$ and $ I_a$ is the excenter of the triangle with respect to $ A$. $ K$ is a point on the extension of $ AB$ from $ B$, for which $ \angle AKI_a\equal{}90^\circ\plus{}\frac 34\angle C$. $ I_aK$ intersects the extension of $ AD$ at $ L$. Prove that $ DI_a$ bisects the angle $ \angle AI_aB$ iff $ AL\equal{}2R$. ($ R$ is the circumradius of $ ABC$)
2011 NIMO Problems, 8
Triangle $ABC$ with $\measuredangle A = 90^\circ$ has incenter $I$. A circle passing through $A$ with center $I$ is drawn, intersecting $\overline{BC}$ at $E$ and $F$ such that $BE < BF$. If $\tfrac{BE}{EF} = \tfrac{2}{3}$, then $\tfrac{CF}{FE} = \tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
[i]Proposed by Lewis Chen
[/i]
1998 Poland - First Round, 3
In the isosceles triangle $ ABC$ the angle $ BAC$ is a right angle. Point $ D$ lies on the side $ BC$ and satisfies $ BD \equal{} 2 \cdot CD$. Point $ E$ is the foot of the perpendicular of the point $ B$ on the line $ AD$. Find the angle $ CED$.
2014 ELMO Shortlist, 13
Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$.
[i]Proposed by David Stoner[/i]
2012 France Team Selection Test, 2
Let $ABC$ be an acute-angled triangle with $AB\not= AC$. Let $\Gamma$ be the circumcircle, $H$ the orthocentre and $O$ the centre of $\Gamma$. $M$ is the midpoint of $BC$. The line $AM$ meets $\Gamma$ again at $N$ and the circle with diameter $AM$ crosses $\Gamma$ again at $P$. Prove that the lines $AP,BC,OH$ are concurrent if and only if $AH=HN$.
2014 Iran Geometry Olympiad (senior), 4:
A tangent line to circumcircle of acute triangle $ABC$ ($AC>AB$) at $A$ intersects with the extension of $BC$ at $P$. $O$ is the circumcenter of triangle $ABC$.Point $X$ lying on $OP$ such that $\measuredangle AXP=90^\circ$.Points $E$ and $F$ lying on $AB$ and $AC$,respectively,and they are in one side of line $OP$ such that $ \measuredangle EXP=\measuredangle ACX $ and $\measuredangle FXO=\measuredangle ABX $.
$K$,$L$ are points of intersection $EF$ with circumcircle of triangle $ABC$.prove that $OP$ is tangent to circumcircle of triangle $KLX$.
Author:Mehdi E'tesami Fard , Iran
1994 AIME Problems, 14
A beam of light strikes $\overline{BC}$ at point $C$ with angle of incidence $\alpha=19.94^\circ$ and reflects with an equal angle of reflection as shown. The light beam continues its path, reflecting off line segments $\overline{AB}$ and $\overline{BC}$ according to the rule: angle of incidence equals angle of reflection. Given that $\beta=\alpha/10=1.994^\circ$ and $AB=AC,$ determine the number of times the light beam will bounce off the two line segments. Include the first reflection at $C$ in your count.
[asy]
size(250);defaultpen(linewidth(0.7));
real alpha=24, beta=32;
pair B=origin, C=(1,0), A=dir(beta), D=C+0.5*dir(alpha);
pair EE=2*dir(180-alpha), E=intersectionpoint(C--EE, A--B);
pair EEE=reflect(B,A)*EE, EEEE=reflect(C,B)*EEE, F=intersectionpoint(E--EEE, B--C), G=intersectionpoint(F--EEEE, A--B);
draw((1.4,0)--B--1.4*dir(beta));
draw(D--C, linetype("4 4"),EndArrow(5));
draw(C--E, linetype("4 4"),EndArrow(5));
draw(E--F, linetype("4 4"),EndArrow(5));
draw(F--G, linetype("4 4"),EndArrow(5));
markscalefactor=0.01;
draw(anglemark(C,B,A));
draw(anglemark((1.4,0), C,D));
label("$\beta$", 0.07*dir(beta/2), dir(beta/2), fontsize(10));
label("$\alpha$", C+0.07*dir(alpha/2), dir(alpha/2), fontsize(10));
label("$A$", A, dir(90)*dir(A));
label("$B$", B, dir(beta/2+180));
label("$C$", C, S);[/asy]
2013 Germany Team Selection Test, 3
Let $ABC$ be an acute-angled triangle with circumcircle $\omega$. Prove that there exists a point $J$ such that for any point $X$ inside $ABC$ if $AX,BX,CX$ intersect $\omega$ in $A_1,B_1,C_1$ and $A_2,B_2,C_2$ be reflections of $A_1,B_1,C_1$ in midpoints of $BC,AC,AB$ respectively then $A_2,B_2,C_2,J$ lie on a circle.
2021 Auckland Mathematical Olympiad, 2
Triangle $ABC$ is the right angled triangle with the vertex $C$ at the right angle. Let $P$ be the point of reflection of $C$ about $AB$. It is known that $P$ and two midpoints of two sides of $ABC$ lie on a line. Find the angles of the triangle.
2013 NIMO Problems, 8
The diagonals of convex quadrilateral $BSCT$ meet at the midpoint $M$ of $\overline{ST}$. Lines $BT$ and $SC$ meet at $A$, and $AB = 91$, $BC = 98$, $CA = 105$. Given that $\overline{AM} \perp \overline{BC}$, find the positive difference between the areas of $\triangle SMC$ and $\triangle BMT$.
[i]Proposed by Evan Chen[/i]
2009 Vietnam Team Selection Test, 1
Let an acute triangle $ ABC$ with curcumcircle $ (O)$. Call $ A_1,B_1,C_1$ are foots of perpendicular line from $ A,B,C$ to opposite side. $ A_2,B_2,C_2$ are reflect points of $ A_1,B_1,C_1$ over midpoints of $ BC,CA,AB$ respectively. Circle $ (AB_2C_2),(BC_2A_2),(CA_2B_2)$ cut $ (O)$ at $ A_3,B_3,C_3$ respectively.
Prove that: $ A_1A_3,B_1B_3,C_1C_3$ are concurent.
2009 India National Olympiad, 5
Let $ ABC$ be an acute angled triangle and let $ H$ be its ortho centre. Let $ h_{max}$ denote the largest altitude of the triangle $ ABC$. Prove that:
$AH \plus{} BH \plus{} CH\leq2h_{max}$
2020 Candian MO, 2#
Let $ABC$ be a triangle, and $M$ an interior point such that $\angle MAB=10^\circ$, $\angle MBA=20^\circ$, $\angle MAC=40^\circ$ and $\angle MCA=30^\circ$. Prove that the triangle is isosceles.
2008 IMO Shortlist, 4
In an acute triangle $ ABC$ segments $ BE$ and $ CF$ are altitudes. Two circles passing through the point $ A$ and $ F$ and tangent to the line $ BC$ at the points $ P$ and $ Q$ so that $ B$ lies between $ C$ and $ Q$. Prove that lines $ PE$ and $ QF$ intersect on the circumcircle of triangle $ AEF$.
[i]Proposed by Davood Vakili, Iran[/i]
1994 AIME Problems, 15
Given a point $P$ on a triangular piece of paper $ABC,$ consider the creases that are formed in the paper when $A, B,$ and $C$ are folded onto $P.$ Let us call $P$ a fold point of $\triangle ABC$ if these creases, which number three unless $P$ is one of the vertices, do not intersect. Suppose that $AB=36, AC=72,$ and $\angle B=90^\circ.$ Then the area of the set of all fold points of $\triangle ABC$ can be written in the form $q\pi-r\sqrt{s},$ where $q, r,$ and $s$ are positive integers and $s$ is not divisible by the square of any prime. What is $q+r+s$?
2006 China Team Selection Test, 1
The centre of the circumcircle of quadrilateral $ABCD$ is $O$ and $O$ is not on any of the sides of $ABCD$. $P=AC \cap BD$. The circumecentres of $\triangle{OAB}$, $\triangle{OBC}$, $\triangle{OCD}$ and $\triangle{ODA}$ are $O_1$, $O_2$, $O_3$ and $O_4$ respectively.
Prove that $O_1O_3$, $O_2O_4$ and $OP$ are concurrent.
2015 Costa Rica - Final Round, 1
Let $ABCD$ be a quadrilateral whose diagonals are perpendicular, and let $S$ be the intersection of those diagonals. Let $K, L, M$ and $N$ be the reflections of $S$ on the sides $AB$, $BC$, $CD$ and $DA$ respectively. $BN$ cuts the circumcircle of $\vartriangle SKN$ at $E$ and $BM$ cuts the circumcircle of $\vartriangle SLM$ at $F$. Prove that the quadrilateral $EFLK$ is cyclic.
1988 AIME Problems, 14
Let $C$ be the graph of $xy = 1$, and denote by $C^*$ the reflection of $C$ in the line $y = 2x$. Let the equation of $C^*$ be written in the form
\[ 12x^2 + bxy + cy^2 + d = 0. \]
Find the product $bc$.
2019 CMIMC, 8
Consider the following three lines in the Cartesian plane: $$\begin{cases}
\ell_1: & 2x - y = 7\\
\ell_2: & 5x + y = 42\\
\ell_3: & x + y = 14
\end{cases}$$
and let $f_i(P)$ correspond to the reflection of the point $P$ across $\ell_i$. Suppose $X$ and $Y$ are points on the $x$ and $y$ axes, respectively, such that $f_1(f_2(f_3(X)))= Y$. Let $t$ be the length of segment $XY$; what is the sum of all possible values of $t^2$?
1970 IMO Longlists, 56
A square hole of depth $h$ whose base is of length $a$ is given. A dog is tied to the center of the square at the bottom of the hole by a rope of length $L >\sqrt{2a^2+h^2}$, and walks on the ground around the hole. The edges of the hole are smooth, so that the rope can freely slide along it. Find the shape and area of the territory accessible to the dog (whose size is neglected).
2009 China Team Selection Test, 1
Given that circle $ \omega$ is tangent internally to circle $ \Gamma$ at $ S.$ $ \omega$ touches the chord $ AB$ of $ \Gamma$ at $ T$. Let $ O$ be the center of $ \omega.$ Point $ P$ lies on the line $ AO.$ Show that $ PB\perp AB$ if and only if $ PS\perp TS.$
2014 IberoAmerican, 2
Let $ABC$ be an acute triangle and $H$ its orthocenter. Let $D$ be the intersection of the altitude from $A$ to $BC$. Let $M$ and $N$ be the midpoints of $BH$ and $CH$, respectively. Let the lines $DM$ and $DN$ intersect $AB$ and $AC$ at points $X$ and $Y$ respectively. If $P$ is the intersection of $XY$ with $BH$ and $Q$ the intersection of $XY$ with $CH$, show that $H, P, D, Q$ lie on a circumference.
2025 USA IMO Team Selection Test, 4
Let $ABC$ be a triangle, and let $X$, $Y$, and $Z$ be collinear points such that $AY=AZ$, $BZ=BX$, and $CX=CY$. Points $X'$, $Y'$, and $Z'$ are the reflections of $X$, $Y$, and $Z$ over $BC$, $CA$, and $AB$, respectively. Prove that if $X'Y'Z'$ is a nondegenerate triangle, then its circumcenter lies on the circumcircle of $ABC$.
[i]Michael Ren[/i]