This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2010 Contests, 2

Let $ABC$ be an acute triangle with orthocentre $H$, and let $M$ be the midpoint of $AC$. The point $C_1$ on $AB$ is such that $CC_1$ is an altitude of the triangle $ABC$. Let $H_1$ be the reflection of $H$ in $AB$. The orthogonal projections of $C_1$ onto the lines $AH_1$, $AC$ and $BC$ are $P$, $Q$ and $R$, respectively. Let $M_1$ be the point such that the circumcentre of triangle $PQR$ is the midpoint of the segment $MM_1$. Prove that $M_1$ lies on the segment $BH_1$.

2015 India Regional MathematicaI Olympiad, 1

Let \(ABC\) be a triangle. Let \(B'\) denote the reflection of \(b\) in the internal angle bisector \(l\) of \(\angle A\).Show that the circumcentre of the triangle \(CB'I\) lies on the line \(l\) where \(I\) is the incentre of \(ABC\).

Russian TST 2017, P1

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

1995 Italy TST, 4

In a triangle $ABC$, $P$ and $Q$ are the feet of the altitudes from $B$ and $A$ respectively. Find the locus of the circumcentre of triangle $PQC$, when point $C$ varies (with $A$ and $B$ fixed) in such a way that $\angle ACB$ is equal to $60^{\circ}$.

2009 Harvard-MIT Mathematics Tournament, 3

A rectangular piece of paper with side lengths 5 by 8 is folded along the dashed lines shown below, so that the folded flaps just touch at the corners as shown by the dotted lines. Find the area of the resulting trapezoid. [asy] size(150); defaultpen(linewidth(0.8)); draw(origin--(8,0)--(8,5)--(0,5)--cycle,linewidth(1)); draw(origin--(8/3,5)^^(16/3,5)--(8,0),linetype("4 4")); draw(origin--(4,3)--(8,0)^^(8/3,5)--(4,3)--(16/3,5),linetype("0 4")); label("$5$",(0,5/2),W); label("$8$",(4,0),S); [/asy]

2007 Italy TST, 3

Let $p \geq 5$ be a prime. (a) Show that exists a prime $q \neq p$ such that $q| (p-1)^{p}+1$ (b) Factoring in prime numbers $(p-1)^{p}+1 = \prod_{i=1}^{n}p_{i}^{a_{i}}$ show that: \[\sum_{i=1}^{n}p_{i}a_{i}\geq \frac{p^{2}}2 \]

1988 IMO Longlists, 52

$ ABCD$ is a quadrilateral. $ A'BCD'$ is the reflection of $ ABCD$ in $ BC,$ $ A''B'CD'$ is the reflection of $ A'BCD'$ in $ CD'$ and $ A''B''C'D'$ is the reflection of $ A''B'CD'$ in $ D'A''.$ Show that; if the lines $ AA''$ and $ BB''$ are parallel, then ABCD is a cyclic quadrilateral.

2010 Tuymaada Olympiad, 2

Let $ABC$ be an acute triangle, $H$ its orthocentre, $D$ a point on the side $[BC]$, and $P$ a point such that $ADPH$ is a parallelogram. Show that $\angle BPC > \angle BAC$.

2023 Macedonian Team Selection Test, Problem 2

Let $ABC$ be an acute triangle such that $AB<AC$ and $AB<BC$. Let $P$ be a point on the segment $BC$ such that $\angle APB = \angle BAC$. The tangent to the circumcircle of triangle $ABC$ at $A$ meets the circumcircle of triangle $APB$ at $Q \neq A$. Let $Q'$ be the reflection of $Q$ with respect to the midpoint of $AB$. The line $PQ$ meets the segment $AQ'$ at $S$. Prove that $$\frac{1}{AB}+\frac{1}{AC} > \frac{1}{CS}.$$ [i]Authored by Nikola Velov[/i]

2007 Tournament Of Towns, 7

$T$ is a point on the plane of triangle $ABC$ such that $\angle ATB = \angle BTC = \angle CTA = 120^\circ$. Prove that the lines symmetric to $AT, BT$ and $CT$ with respect to $BC, CA$ and $AB$, respectively, are concurrent.

2020 AMC 10, 23

Square $ABCD$ in the coordinate plane has vertices at the points $A(1,1), B(-1,1), C(-1,-1),$ and $D(1,-1).$ Consider the following four transformations: [list=] [*]$L,$ a rotation of $90^{\circ}$ counterclockwise around the origin; [*]$R,$ a rotation of $90^{\circ}$ clockwise around the origin; [*]$H,$ a reflection across the $x$-axis; and [*]$V,$ a reflection across the $y$-axis. [/list] Each of these transformations maps the squares onto itself, but the positions of the labeled vertices will change. For example, applying $R$ and then $V$ would send the vertex $A$ at $(1,1)$ to $(-1,-1)$ and would send the vertex $B$ at $(-1,1)$ to itself. How many sequences of $20$ transformations chosen from $\{L, R, H, V\}$ will send all of the labeled vertices back to their original positions? (For example, $R, R, V, H$ is one sequence of $4$ transformations that will send the vertices back to their original positions.) $\textbf{(A)}\ 2^{37} \qquad\textbf{(B)}\ 3\cdot 2^{36} \qquad\textbf{(C)}\ 2^{38} \qquad\textbf{(D)}\ 3\cdot 2^{37} \qquad\textbf{(E)}\ 2^{39}$

2008 Federal Competition For Advanced Students, Part 2, 3

We are given a line $ g$ with four successive points $ P$, $ Q$, $ R$, $ S$, reading from left to right. Describe a straightedge and compass construction yielding a square $ ABCD$ such that $ P$ lies on the line $ AD$, $ Q$ on the line $ BC$, $ R$ on the line $ AB$ and $ S$ on the line $ CD$.

2014 PUMaC Geometry A, 4

Consider the cyclic quadrilateral with side lengths $1$, $4$, $8$, $7$ in that order. What is its circumdiameter? Let the answer be of the form $a\sqrt b+c$, for $b$ squarefree. Find $a+b+c$.

2007 Iran MO (3rd Round), 1

Consider two polygons $ P$ and $ Q$. We want to cut $ P$ into some smaller polygons and put them together in such a way to obtain $ Q$. We can translate the pieces but we can not rotate them or reflect them. We call $ P,Q$ equivalent if and only if we can obtain $ Q$ from $ P$(which is obviously an equivalence relation). [img]http://i3.tinypic.com/4lrb43k.png[/img] a) Let $ P,Q$ be two rectangles with the same area(their sides are not necessarily parallel). Prove that $ P$ and $ Q$ are equivalent. b) Prove that if two triangles are not translation of each other, they are not equivalent. c) Find a necessary and sufficient condition for polygons $ P,Q$ to be equivalent.

2014 AMC 12/AHSME, 18

The numbers 1, 2, 3, 4, 5 are to be arranged in a circle. An arrangement is [i]bad[/i] if it is not true that for every $n$ from $1$ to $15$ one can find a subset of the numbers that appear consecutively on the circle that sum to $n$. Arrangements that differ only by a rotation or a reflection are considered the same. How many different bad arrangements are there? $ \textbf {(A) } 1 \qquad \textbf {(B) } 2 \qquad \textbf {(C) } 3 \qquad \textbf {(D) } 4 \qquad \textbf {(E) } 5 $

2014 IberoAmerican, 2

Let $ABC$ be an acute triangle and $H$ its orthocenter. Let $D$ be the intersection of the altitude from $A$ to $BC$. Let $M$ and $N$ be the midpoints of $BH$ and $CH$, respectively. Let the lines $DM$ and $DN$ intersect $AB$ and $AC$ at points $X$ and $Y$ respectively. If $P$ is the intersection of $XY$ with $BH$ and $Q$ the intersection of $XY$ with $CH$, show that $H, P, D, Q$ lie on a circumference.

Brazil L2 Finals (OBM) - geometry, 2000.3

A rectangular piece of paper has top edge $AD$. A line $L$ from $A$ to the bottom edge makes an angle $x$ with the line $AD$. We want to trisect $x$. We take $B$ and $C$ on the vertical ege through $A$ such that $AB = BC$. We then fold the paper so that $C$ goes to a point $C'$ on the line $L$ and $A$ goes to a point $A'$ on the horizontal line through $B$. The fold takes $B$ to $B'$. Show that $AA'$ and $AB'$ are the required trisectors.

2024 Canadian Junior Mathematical Olympiad, 3

Let $ABC$ be a triangle with incenter $I$. Suppose the reflection of $AB$ across $CI$ and the reflection of $AC$ across $BI$ intersect at a point $X$. Prove that $XI$ is perpendicular to $BC$.

2014 ELMO Shortlist, 13

Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$. [i]Proposed by David Stoner[/i]

1992 AMC 12/AHSME, 12

Let $y = mx + b$ be the image when the line $x - 3y + 11 = 0$ is reflected across the x-axis. The value of $m + b$ is $ \textbf{(A)}\ -6\qquad\textbf{(B)}\ -5\qquad\textbf{(C)}\ -4\qquad\textbf{(D)}\ -3\qquad\textbf{(E)}\ -2 $

2012 IMO Shortlist, G2

Let $ABCD$ be a cyclic quadrilateral whose diagonals $AC$ and $BD$ meet at $E$. The extensions of the sides $AD$ and $BC$ beyond $A$ and $B$ meet at $F$. Let $G$ be the point such that $ECGD$ is a parallelogram, and let $H$ be the image of $E$ under reflection in $AD$. Prove that $D,H,F,G$ are concyclic.

2010 Contests, 2

Given a triangle $ABC$, let $A',B',C'$ be the perpendicular feet dropped from the centroid $G$ of the triangle $ABC$ onto the sides $BC,CA,AB$ respectively. Reflect $A',B',C'$ through $G$ to $A'',B'',C''$ respectively. Prove that the lines $AA'',BB'',CC''$ are concurrent.

2008 China National Olympiad, 1

Suppose $\triangle ABC$ is scalene. $O$ is the circumcenter and $A'$ is a point on the extension of segment $AO$ such that $\angle BA'A = \angle CA'A$. Let point $A_1$ and $A_2$ be foot of perpendicular from $A'$ onto $AB$ and $AC$. $H_{A}$ is the foot of perpendicular from $A$ onto $BC$. Denote $R_{A}$ to be the radius of circumcircle of $\triangle H_{A}A_1A_2$. Similiarly we can define $R_{B}$ and $R_{C}$. Show that: \[\frac{1}{R_{A}} + \frac{1}{R_{B}} + \frac{1}{R_{C}} = \frac{2}{R}\] where R is the radius of circumcircle of $\triangle ABC$.

2007 Italy TST, 1

Let $ABC$ an acute triangle. (a) Find the locus of points that are centers of rectangles whose vertices lie on the sides of $ABC$; (b) Determine if exist some points that are centers of $3$ distinct rectangles whose vertices lie on the sides of $ABC$.

2002 India IMO Training Camp, 18

Consider the square grid with $A=(0,0)$ and $C=(n,n)$ at its diagonal ends. Paths from $A$ to $C$ are composed of moves one unit to the right or one unit up. Let $C_n$ (n-th catalan number) be the number of paths from $A$ to $C$ which stay on or below the diagonal $AC$. Show that the number of paths from $A$ to $C$ which cross $AC$ from below at most twice is equal to $C_{n+2}-2C_{n+1}+C_n$