Found problems: 1001
2012 USAMTS Problems, 3
In quadrilateral $ABCD$, $\angle DAB=\angle ABC=110^{\circ}$, $\angle BCD=35^{\circ}$, $\angle CDA=105^{\circ}$, and $AC$ bisects $\angle DAB$. Find $\angle ABD$.
2010 Canada National Olympiad, 1
For all natural $n$, an $n$-staircase is a figure consisting of unit squares, with one square in the first row, two squares in the second row, and so on, up to $n$ squares in the $n^{th}$ row, such that all the left-most squares in each row are aligned vertically.
Let $f(n)$ denote the minimum number of square tiles requires to tile the $n$-staircase, where the side lengths of the square tiles can be any natural number. e.g. $f(2)=3$ and $f(4)=7$.
(a) Find all $n$ such that $f(n)=n$.
(b) Find all $n$ such that $f(n) = n+1$.
2021 Federal Competition For Advanced Students, P2, 5
Let $ABCD$ be a convex cyclic quadrilateral with diagonals $AC$ and $BD$. Each of the four vertixes are reflected across the diagonal on which the do not lie.
(a) Investigate when the four points thus obtained lie on a straight line and give as simple an equivalent condition as possible to the cyclic quadrilateral $ABCD$ for it.
(b) Show that in all other cases the four points thus obtained lie on one circle.
(Theresia Eisenkölbl)
1985 IMO Longlists, 72
Construct a triangle $ABC$ given the side $AB$ and the distance $OH$ from the circumcenter $O$ to the orthocenter $H$, assuming that $OH$ and $AB$ are parallel.
2012 Turkey Team Selection Test, 2
In an acute triangle $ABC,$ let $D$ be a point on the side $BC.$ Let $M_1, M_2, M_3, M_4, M_5$ be the midpoints of the line segments $AD, AB, AC, BD, CD,$ respectively and $O_1, O_2, O_3, O_4$ be the circumcenters of triangles $ABD, ACD, M_1M_2M_4, M_1M_3M_5,$ respectively. If $S$ and $T$ are midpoints of the line segments $AO_1$ and $AO_2,$ respectively, prove that $SO_3O_4T$ is an isosceles trapezoid.
2006 International Zhautykov Olympiad, 3
Let $ ABCDEF$ be a convex hexagon such that $ AD \equal{} BC \plus{} EF$, $ BE \equal{} AF \plus{} CD$, $ CF \equal{} DE \plus{} AB$. Prove that:
\[ \frac {AB}{DE} \equal{} \frac {CD}{AF} \equal{} \frac {EF}{BC}.
\]
2019 Iran Team Selection Test, 4
Given an acute-angled triangle $ABC$ with orthocenter $H$. Reflection of nine-point circle about $AH$ intersects circumcircle at points $X$ and $Y$. Prove that $AH$ is the external bisector of $\angle XHY$.
[i]Proposed by Mohammad Javad Shabani[/i]
2014 India IMO Training Camp, 1
In a triangle $ABC$, with $AB\neq AC$ and $A\neq 60^{0},120^{0}$, $D$ is a point on line $AC$ different from $C$. Suppose that the circumcentres and orthocentres of triangles $ABC$ and $ABD$ lie on a circle. Prove that $\angle ABD=\angle ACB$.
2025 Kosovo EGMO Team Selection Test, P1
Let $ABC$ be an acute triangle. Let $D$ and $E$ be the feet of the altitudes of the triangle $ABC$ from $A$ and $B$, respectively. Let $F$ be the reflection of the point $A$ over $BC$. Let $G$ be a point such that the quadrilateral $ABCG$ is a parallelogram. Show that the circumcircles of triangles $BCF$ , $ACG$ and $CDE$ are concurrent on a point different from $C$.
2005 Turkey Team Selection Test, 2
Let $ABC$ be a triangle such that $\angle A=90$ and $\angle B < \angle C$. The tangent at $A$ to its circumcircle $\Gamma$ meets the line $BC$ at $D$. Let $E$ be the reflection of $A$ across $BC$, $X$ the foot of the perpendicular from $A$ to $BE$, and $Y$ be the midpoint of $AX$. Let the line $BY$ meet $\Gamma$ again at $Z$. Prove that the line $BD$ is tangent to circumcircle of triangle $ADZ$ .
2014 Vietnam National Olympiad, 4
Let $ABC$ be an acute triangle, $(O)$ be the circumcircle, and $AB<AC.$ Let $I$ be the midpoint of arc $BC$ (not containing $A$). $K$ lies on $AC,$ $K\ne C$ such that $IK=IC.$ $BK$ intersects $(O)$ at the second point $D,$ $D\ne B$ and intersects $AI$ at $E.$ $DI$ intersects $AC$ at $F.$
a) Prove that $EF=\frac{BC}{2}.$
b) $M$ lies on $DI$ such that $CM$ is parallel to $AD.$ $KM$ intersects $BC$ at $N.$ The circumcircle of triangle $BKN$ intersects $(O)$ at the second point $P.$ Prove that $PK$ passes through the midpoint of segment $AD.$
2011 China Team Selection Test, 1
Let $AA',BB',CC'$ be three diameters of the circumcircle of an acute triangle $ABC$. Let $P$ be an arbitrary point in the interior of $\triangle ABC$, and let $D,E,F$ be the orthogonal projection of $P$ on $BC,CA,AB$, respectively. Let $X$ be the point such that $D$ is the midpoint of $A'X$, let $Y$ be the point such that $E$ is the midpoint of $B'Y$, and similarly let $Z$ be the point such that $F$ is the midpoint of $C'Z$. Prove that triangle $XYZ$ is similar to triangle $ABC$.
1938 Moscow Mathematical Olympiad, 039
The following operation is performed over points $O_1, O_2, O_3$ and $A$ in space. The point $A$ is reflected with respect to $O_1$, the resultant point $A_1$ is reflected through $O_2$, and the resultant point $A_2$ through $O_3$. We get some point $A_3$ that we will also consecutively reflect through $O_1, O_2, O_3$. Prove that the point obtained last coincides with $A$..
2008 Bundeswettbewerb Mathematik, 3
Through a point in the interior of a sphere we put three pairwise perpendicular planes. Those planes dissect the surface of the sphere in eight curvilinear triangles. Alternately the triangles are coloured black and wide to make the sphere surface look like a checkerboard. Prove that exactly half of the sphere's surface is coloured black.
2006 Harvard-MIT Mathematics Tournament, 8
Triangle $ABC$ has a right angle at $B$. Point $D$ lies on side $BC$ such that $3\angle BAD = \angle BAC$. Given $AC=2$ and $CD=1$, compute $BD$.
2003 Tournament Of Towns, 6
A trapezoid with bases $AD$ and $BC$ is circumscribed about a circle, $E$ is the intersection point of the diagonals. Prove that $\angle AED$ is not acute.
2007 Iran Team Selection Test, 1
In an isosceles right-angled triangle shaped billiards table , a ball starts moving from one of the vertices adjacent to hypotenuse. When it reaches to one side then it will reflect its path. Prove that if we reach to a vertex then it is not the vertex at initial position
[i]By Sam Nariman[/i]
2013 Serbia National Math Olympiad, 5
Let $A'$ and $B'$ be feet of altitudes from $A$ and $B$, respectively, in acute-angled triangle $ABC$ ($AC\not = BC$). Circle $k$ contains points $A'$ and $B'$ and touches segment $AB$ in $D$. If triangles $ADA'$ and $BDB'$ have the same area, prove that \[\angle A'DB'= \angle ACB.\]
2005 Colombia Team Selection Test, 5
Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$.
Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.
2010 Mediterranean Mathematics Olympiad, 3
Let $A'\in(BC),$ $B'\in(CA),C'\in(AB)$ be the points of tangency of the excribed circles of triangle $\triangle ABC$ with the sides of $\triangle ABC.$ Let $R'$ be the circumradius of triangle $\triangle A'B'C'.$ Show that \[
R'=\frac{1}{2r}\sqrt{2R\left(2R-h_{a}\right)\left(2R-h_{b}\right)\left(2R-h_{c}\right)}\]
where as usual, $R$ is the circumradius of $\triangle ABC,$ r is the inradius of $\triangle ABC,$ and $h_{a},h_{b},h_{c}$ are the lengths of altitudes of $\triangle ABC.$
Russian TST 2019, P2
Let $I$ be an incenter of $\triangle ABC$. Denote $D, \ S \neq A$ intersections of $AI$ with $BC, \ O(ABC)$ respectively. Let $K, \ L$ be incenters of $\triangle DSB, \ \triangle DCS$. Let $P$ be a reflection of $I$ with the respect to $KL$. Prove that $BP \perp CP$.
1974 Spain Mathematical Olympiad, 4
All three sides of an equilateral triangle are assumed to be reflective (except in the vertices), in such a way that they reflect the rays of light located in their plane, that fall on them and that come out of an interior point of the triangle.
Determine the path of a ray of light that, starting from a vertex of the triangle reach another vertex of the same after reflecting successively on the three sides. Calculate the length of the path followed by the light assuming that the side of the triangle measures $1$ m.
2011 Sharygin Geometry Olympiad, 3
Let $ABC$ be a triangle with $\angle{A} = 60^\circ$. The midperpendicular of segment $AB$ meets line $AC$ at point $C_1$. The midperpendicular of segment $AC$ meets line $AB$ at point $B_1$. Prove that line $B_1C_1$ touches the incircle of triangle $ABC$.
2020-2021 Winter SDPC, #3
Let $ABCD$ be a quadrilateral, let $P$ be the intersection of $AB$ and $CD$, and let $O$ be the intersection of the perpendicular bisectors of $AB$ and $CD$. Suppose that $O$ does not lie on line $AB$ and $O$ does not lie on line $CD$. Let $B'$ and $D'$ be the reflections of $B$ and $D$ across $OP$. Show that if $AB'$ and $CD'$ meet on $OP$, then $ABCD$ is cyclic.
2012 ITAMO, 5
$ABCD$ is a square. Describe the locus of points $P$, different from $A, B, C, D$, on that plane for which
\[\widehat{APB}+\widehat{CPD}=180^\circ\]