Found problems: 698
2007 ITest, 36
Let $b$ be a real number randomly sepected from the interval $[-17,17]$. Then, $m$ and $n$ are two relatively prime positive integers such that $m/n$ is the probability that the equation \[x^4+25b^2=(4b^2-10b)x^2\] has $\textit{at least}$ two distinct real solutions. Find the value of $m+n$.
2025 Euler Olympiad, Round 2, 1
Let a pair of positive integers $(n, m)$ that are relatively prime be called [i]intertwined[/i] if among any two divisors of $n$ greater than $1$, there exists a divisor of $m$ and among any two divisors of $m$ greater than $1$, there exists a divisor of $n$. For example, pair $(63, 64)$ is intertwined.
[b]a)[/b] Find the largest integer $k$ for which there exists an intertwined pair $(n, m)$ such that the product $nm$ is equal to the product of the first $k$ prime numbers.
[b]b)[/b] Prove that there does [b]not[/b] exist an intertwined pair $(n, m)$ such that the product $nm$ is the product of $2025$ distinct prime numbers.
[b]c)[/b] Prove that there exists an intertwined pair $(n, m)$ such that the number of divisors of $n$ is greater than $2025$.
[i]Proposed by Stijn Cambie, Belgium[/i]
1993 AIME Problems, 11
Alfred and Bonnie play a game in which they take turns tossing a fair coin. The winner of a game is the first person to obtain a head. Alfred and Bonnie play this game several times with the stipulation that the loser of a game goes first in the next game. Suppose that Alfred goes first in the first game, and that the probability that he wins the sixth game is $m/n$, where $m$ and $n$ are relatively prime positive integers. What are the last three digits of $m + n$?
1979 IMO Longlists, 24
Let $a$ and $b$ be coprime integers, greater than or equal to $1$. Prove that all integers $n$ greater than or equal to $(a - 1)(b - 1)$ can be written in the form:
\[n = ua + vb, \qquad \text{with} (u, v) \in \mathbb N \times \mathbb N.\]
2008 IMC, 1
Let $ n, k$ be positive integers and suppose that the polynomial $ x^{2k}\minus{}x^k\plus{}1$ divides $ x^{2n}\plus{}x^n\plus{}1$. Prove that $ x^{2k}\plus{}x^k\plus{}1$ divides $ x^{2n}\plus{}x^n\plus{}1$.
2008 Romania National Olympiad, 2
A rectangle can be divided by parallel lines to its sides into 200 congruent squares, and also in 288 congruent squares. Prove that the rectangle can also be divided into 392 congruent squares.
2011 Purple Comet Problems, 6
Working alone, the expert can paint a car in one day, the amateur can paint a car in two days, and the beginner can paint a car in three days. If the three painters work together at these speeds to paint three cars, it will take them $\frac{m}{n}$ days where $m$ and $n$ are relatively prime positive integers. Find $m + n.$
2005 Purple Comet Problems, 8
The number $1$ is special. The number $2$ is special because it is relatively prime to $1$. The number $3$ is not special because it is not relatively prime to the sum of the special numbers less than it, $1 + 2$. The number $4$ is special because it is relatively prime to the sum of the special numbers less than it. So, a number bigger than $1$ is special only if it is relatively prime to the sum of the special numbers less than it. Find the twentieth special number.
2003 AIME Problems, 4
In a regular tetrahedron the centers of the four faces are the vertices of a smaller tetrahedron. The ratio of the volume of the smaller tetrahedron to that of the larger is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2014 Romania Team Selection Test, 4
Let $f$ be the function of the set of positive integers into itself, defined by $f(1) = 1$,
$f(2n) = f(n)$ and $f(2n + 1) = f(n) + f(n + 1)$. Show that, for any positive integer $n$, the
number of positive odd integers m such that $f(m) = n$ is equal to the number of positive
integers[color=#0000FF][b] less or equal to [/b][/color]$n$ and coprime to $n$.
[color=#FF0000][mod: the initial statement said less than $n$, which is wrong.][/color]
2007 Purple Comet Problems, 11
A dart board looks like three concentric circles with radii of 4, 6, and 8. Three darts are thrown at the board so that they stick at three random locations on then board. The probability that one dart sticks in each of the three regions of the dart board is $\dfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
2005 AIME Problems, 8
Circles $C_1$ and $C_2$ are externally tangent, and they are both internally tangent to circle $C_3$. The radii of $C_1$ and $C_2$ are $4$ and $10$, respectively, and the centers of the three circles are all collinear. A chord of $C_3$ is also a common external tangent of $C_1$ and $C_2$. Given that the length of the chord is $\frac{m\sqrt{n}}{p}$ where $m,n,$ and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime, find $m+n+p$.
2009 AIME Problems, 3
A coin that comes up heads with probability $ p > 0$ and tails with probability $ 1\minus{}p > 0$ independently on each flip is flipped eight times. Suppose the probability of three heads and five tails is equal to $ \frac{1}{25}$ of the probability of five heads and three tails. Let $ p \equal{} \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m\plus{}n$.
PEN H Problems, 77
Find all pairwise relatively prime positive integers $l, m, n$ such that \[(l+m+n)\left( \frac{1}{l}+\frac{1}{m}+\frac{1}{n}\right)\] is an integer.
2019 AMC 10, 20
As shown in the figure, line segment $\overline{AD}$ is trisected by points $B$ and $C$ so that $AB=BC=CD=2.$ Three semicircles of radius $1,$ $\overarc{AEB},\overarc{BFC},$ and $\overarc{CGD},$ have their diameters on $\overline{AD},$ and are tangent to line $EG$ at $E,F,$ and $G,$ respectively. A circle of radius $2$ has its center on $F. $ The area of the region inside the circle but outside the three semicircles, shaded in the figure, can be expressed in the form
\[\frac{a}{b}\cdot\pi-\sqrt{c}+d,\]
where $a,b,c,$ and $d$ are positive integers and $a$ and $b$ are relatively prime. What is $a+b+c+d$?
[asy]
size(6cm);
filldraw(circle((0,0),2), gray(0.7));
filldraw(arc((0,-1),1,0,180) -- cycle, gray(1.0));
filldraw(arc((-2,-1),1,0,180) -- cycle, gray(1.0));
filldraw(arc((2,-1),1,0,180) -- cycle, gray(1.0));
dot((-3,-1));
label("$A$",(-3,-1),S);
dot((-2,0));
label("$E$",(-2,0),NW);
dot((-1,-1));
label("$B$",(-1,-1),S);
dot((0,0));
label("$F$",(0,0),N);
dot((1,-1));
label("$C$",(1,-1), S);
dot((2,0));
label("$G$", (2,0),NE);
dot((3,-1));
label("$D$", (3,-1), S);
[/asy]
$\textbf{(A) } 13 \qquad\textbf{(B) } 14 \qquad\textbf{(C) } 15 \qquad\textbf{(D) } 16\qquad\textbf{(E) } 17$
1990 Vietnam Team Selection Test, 1
Let $ T$ be a finite set of positive integers, satisfying the following conditions:
1. For any two elements of $ T$, their greatest common divisor and their least common multiple are also elements of $ T$.
2. For any element $ x$ of $ T$, there exists an element $ x'$ of $ T$ such that $ x$ and $ x'$ are relatively prime, and their least common multiple is the largest number in $ T$.
For each such set $ T$, denote by $ s(T)$ its number of elements. It is known that $ s(T) < 1990$; find the largest value $ s(T)$ may take.
2011 Purple Comet Problems, 28
Pictured below is part of a large circle with radius $30$. There is a chain of three circles with radius $3$, each internally tangent to the large circle and each tangent to its neighbors in the chain. There are two circles with radius $2$ each tangent to two of the radius $3$ circles. The distance between the centers of the two circles with radius $2$ can be written as $\textstyle\frac{a\sqrt b-c}d$, where $a,b,c,$ and $d$ are positive integers, $c$ and $d$ are relatively prime, and $b$ is not divisible by the square of any prime. Find $a+b+c+d$.
[asy]
size(200);
defaultpen(linewidth(0.5));
real r=aCos(79/81);
pair x=dir(270+r)*27,y=dir(270-r)*27;
draw(arc(origin,30,210,330));
draw(circle(x,3)^^circle(y,3)^^circle((0,-27),3));
path arcl=arc(y,5,0,180), arcc=arc((0,-27),5,0,180), arcr=arc(x,5,0,180);
pair centl=intersectionpoint(arcl,arcc), centr=intersectionpoint(arcc,arcr);
draw(circle(centl,2)^^circle(centr,2));
dot(x^^y^^(0,-27)^^centl^^centr,linewidth(2));
[/asy]
1969 IMO Longlists, 23
$(FRA 6)$ Consider the integer $d = \frac{a^b-1}{c}$, where $a, b$, and $c$ are positive integers and $c \le a.$ Prove that the set $G$ of integers that are between $1$ and $d$ and relatively prime to $d$ (the number of such integers is denoted by $\phi(d)$) can be partitioned into $n$ subsets, each of which consists of $b$ elements. What can be said about the rational number $\frac{\phi(d)}{b}?$
2014 Purple Comet Problems, 25
The diagram below shows equilateral $\triangle ABC$ with side length $2$. Point $D$ lies on ray $\overrightarrow{BC}$ so that $CD = 4$. Points $E$ and $F$ lie on $\overline{AB}$ and $\overline{AC}$, respectively, so that $E$, $F$, and $D$ are collinear, and the area of $\triangle AEF$ is half of the area of $\triangle ABC$. Then $\tfrac{AE}{AF}=\tfrac m n$, where $m$ and $n$ are relatively prime positive integers. Find $m + 2n$.
[asy]
import math;
size(7cm);
pen dps = fontsize(10);
defaultpen(dps);
dotfactor=4;
pair A,B,C,D,E,F;
B=origin;
C=(2,0);
D=(6,0);
A=(1,sqrt(3));
E=(1/3,sqrt(3)/3);
F=extension(A,C,E,D);
draw(C--A--B--D,linewidth(1.1));
draw(E--D,linewidth(.7));
dot(A);
dot(B);
dot(C);
dot(D);
dot(E);
dot(F);
label("$A$",A,N);
label("$B$",B,S);
label("$C$",C,S);
label("$D$",D,S);
label("$E$",E,NW);
label("$F$",F,NE);
[/asy]
2010 Purple Comet Problems, 17
Alan, Barb, Cory, and Doug are on the golf team, Doug, Emma, Fran, and Greg are on the swim team, and Greg, Hope, Inga, and Alan are on the tennis team. These nine people sit in a circle in random order. The probability that no two people from the same team sit next to each other is $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n.$
2012 Purple Comet Problems, 30
The diagram below shows four regular hexagons each with side length $1$ meter attached to the sides of a square. This figure is drawn onto a thin sheet of metal and cut out. The hexagons are then bent upward along the sides of the square so that $A_1$ meets $A_2$, $B_1$ meets $B_2$, $C_1$ meets $C_2$, and $D_1$ meets $D_2$. If the resulting dish is filled with water, the water will rise to the height of the corner where the $A_1$ and $A_2$ meet. there are relatively prime positive integers $m$ and $n$ so that the number of cubic meters of water the dish will hold is $\sqrt{\frac{m}{n}}$. Find $m+n$.
[asy]
/* File unicodetex not found. */
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(7cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -4.3, xmax = 14.52, ymin = -8.3, ymax = 6.3; /* image dimensions */
draw((0,1)--(0,0)--(1,0)--(1,1)--cycle);
draw((1,1)--(1,0)--(1.87,-0.5)--(2.73,0)--(2.73,1)--(1.87,1.5)--cycle);
draw((0,1)--(1,1)--(1.5,1.87)--(1,2.73)--(0,2.73)--(-0.5,1.87)--cycle);
draw((0,0)--(1,0)--(1.5,-0.87)--(1,-1.73)--(0,-1.73)--(-0.5,-0.87)--cycle);
draw((0,1)--(0,0)--(-0.87,-0.5)--(-1.73,0)--(-1.73,1)--(-0.87,1.5)--cycle);
/* draw figures */
draw((0,1)--(0,0));
draw((0,0)--(1,0));
draw((1,0)--(1,1));
draw((1,1)--(0,1));
draw((1,1)--(1,0));
draw((1,0)--(1.87,-0.5));
draw((1.87,-0.5)--(2.73,0));
draw((2.73,0)--(2.73,1));
draw((2.73,1)--(1.87,1.5));
draw((1.87,1.5)--(1,1));
draw((0,1)--(1,1));
draw((1,1)--(1.5,1.87));
draw((1.5,1.87)--(1,2.73));
draw((1,2.73)--(0,2.73));
draw((0,2.73)--(-0.5,1.87));
draw((-0.5,1.87)--(0,1));
/* dots and labels */
dot((1.87,-0.5),dotstyle);
label("$C_1$", (1.72,-0.1), NE * labelscalefactor);
dot((1.87,1.5),dotstyle);
label("$B_2$", (1.76,1.04), NE * labelscalefactor);
dot((1.5,1.87),dotstyle);
label("$B_1$", (0.96,1.8), NE * labelscalefactor);
dot((-0.5,1.87),dotstyle);
label("$A_2$", (-0.26,1.78), NE * labelscalefactor);
dot((-0.87,1.5),dotstyle);
label("$A_1$", (-0.96,1.08), NE * labelscalefactor);
dot((-0.87,-0.5),dotstyle);
label("$D_2$", (-1.02,-0.18), NE * labelscalefactor);
dot((-0.5,-0.87),dotstyle);
label("$D_1$", (-0.22,-0.96), NE * labelscalefactor);
dot((1.5,-0.87),dotstyle);
label("$C_2$", (0.9,-0.94), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]
2004 Vietnam Team Selection Test, 1
Let us consider a set $S = \{ a_1 < a_2 < \ldots < a_{2004}\}$, satisfying the following properties: $f(a_i) < 2003$ and $f(a_i) = f(a_j) \quad \forall i, j$ from $\{1, 2,\ldots , 2004\}$, where $f(a_i)$ denotes number of elements which are relatively prime with $a_i$. Find the least positive integer $k$ for which in every $k$-subset of $S$, having the above mentioned properties there are two distinct elements with greatest common divisor greater than 1.
2010 India IMO Training Camp, 5
Given an integer $k>1$, show that there exist an integer an $n>1$ and distinct positive integers $a_1,a_2,\cdots a_n$, all greater than $1$, such that the sums $\sum_{j=1}^n a_j$ and $\sum_{j=1}^n \phi (a_j)$ are both $k$-th powers of some integers.
(Here $\phi (m)$ denotes the number of positive integers less than $m$ and relatively prime to $m$.)
2004 Purple Comet Problems, 21
Define $a_k = (k^2 + 1)k!$ and $b_k = a_1 + a_2 + a_3 + \cdots + a_k$. Let \[\frac{a_{100}}{b_{100}} = \frac{m}{n}\] where $m$ and $n$ are relatively prime natural numbers. Find $n - m$.
2000 AIME Problems, 5
Each of two boxes contains both black and white marbles, and the total number of marbles in the two boxes is $25.$ One marble is taken out of each box randomly. The probability that both marbles are black is $27/50,$ and the probability that both marbles are white is $m/n,$ where $m$ and $n$ are relatively prime positive integers. What is $m+n?$