This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 260

2002 All-Russian Olympiad, 1

Can the cells of a $2002 \times 2002$ table be filled with the numbers from $1$ to $2002^2$ (one per cell) so that for any cell we can find three numbers $a, b, c$ in the same row or column (or the cell itself) with $a = bc$?

2007 Iran Team Selection Test, 2

Find all monic polynomials $f(x)$ in $\mathbb Z[x]$ such that $f(\mathbb Z)$ is closed under multiplication. [i]By Mohsen Jamali[/i]

2004 AMC 12/AHSME, 21

If $ \displaystyle \sum_{n \equal{} 0}^{\infty} \cos^{2n} \theta \equal{} 5$, what is the value of $ \cos{2\theta}$? $ \textbf{(A)}\ \frac15 \qquad \textbf{(B)}\ \frac25 \qquad \textbf{(C)}\ \frac {\sqrt5}{5}\qquad \textbf{(D)}\ \frac35 \qquad \textbf{(E)}\ \frac45$

2011 AMC 10, 23

What is the hundreds digit of $2011^{2011}$? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 9 $

1995 Vietnam Team Selection Test, 2

Find all integers $ k$ such that for infinitely many integers $ n \ge 3$ the polynomial \[ P(x) =x^{n+ 1}+ kx^n - 870x^2 + 1945x + 1995\] can be reduced into two polynomials with integer coefficients.

2007 France Team Selection Test, 2

Let $a,b,c,d$ be positive reals such taht $a+b+c+d=1$. Prove that: \[6(a^{3}+b^{3}+c^{3}+d^{3})\geq a^{2}+b^{2}+c^{2}+d^{2}+\frac{1}{8}.\]

2011 India IMO Training Camp, 3

Let $T$ be a non-empty finite subset of positive integers $\ge 1$. A subset $S$ of $T$ is called [b]good [/b] if for every integer $t\in T$ there exists an $s$ in $S$ such that $gcd(t,s) >1$. Let \[A={(X,Y)\mid X\subseteq T,Y\subseteq T,gcd(x,y)=1 \text{for all} x\in X, y\in Y}\] Prove that : $a)$ If $X_0$ is not [b]good[/b] then the number of pairs $(X_0,Y)$ in $A$ is [b]even[/b]. $b)$ the number of good subsets of $T$ is [b]odd[/b].

1994 Irish Math Olympiad, 4

Consider all $ m \times n$ matrices whose all entries are $ 0$ or $ 1$. Find the number of such matrices for which the number of $ 1$-s in each row and in each column is even.

2005 MOP Homework, 5

Let $ABCD$ be a cyclic quadrilateral such that $AB \cdot BC=2 \cdot AD \cdot DC$. Prove that its diagonals $AC$ and $BD$ satisfy the inequality $8BD^2 \le 9AC^2$. [color=#FF0000]Moderator says: Use the search before posting contest problems [url]http://www.artofproblemsolving.com/Forum/viewtopic.php?f=46&t=530783[/url][/color]

1976 IMO Longlists, 33

A finite set of points $P$ in the plane has the following property: Every line through two points in $P$ contains at least one more point belonging to $P$. Prove that all points in $P$ lie on a straight line. [hide="Remark."]This may be a well known theorem called "Sylvester Gallai", but I didn't find this problem (I mean, exactly this one) using search function. So please discuss about the problem here, in this topic. Thanks :) [/hide]

1991 Baltic Way, 5

For any positive numbers $a, b, c$ prove the inequalities \[\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge \frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\ge \frac{9}{a+b+c}.\]

2002 Poland - Second Round, 3

A positive integer $ n$ is given. In an association consisting of $ n$ members work $ 6$ commissions. Each commission contains at least $ \large \frac{n}{4}$ persons. Prove that there exist two commissions containing at least $ \large \frac{n}{30}$ persons in common.

2008 Romania National Olympiad, 3

Let $ A$ be a unitary finite ring with $ n$ elements, such that the equation $ x^n\equal{}1$ has a unique solution in $ A$, $ x\equal{}1$. Prove that a) $ 0$ is the only nilpotent element of $ A$; b) there exists an integer $ k\geq 2$, such that the equation $ x^k\equal{}x$ has $ n$ solutions in $ A$.

PEN H Problems, 48

Solve the equation $x^2 +7=2^n$ in integers.

1994 Baltic Way, 16

The Wonder Island is inhabited by Hedgehogs. Each Hedgehog consists of three segments of unit length having a common endpoint, with all three angles between them $120^{\circ}$. Given that all Hedgehogs are lying flat on the island and no two of them touch each other, prove that there is a finite number of Hedgehogs on Wonder Island.

2009 Singapore Team Selection Test, 1

Two circles are tangent to each other internally at a point $\ T $. Let the chord $\ AB $ of the larger circle be tangent to the smaller circle at a point $\ P $. Prove that the line $\ TP $ bisects $\ \angle ATB $.

2007 IMS, 7

$x_{1},x_{2},\dots,x_{n}$ are real number such that for each $i$, the set $\{x_{1},x_{2},\dots,x_{n}\}\backslash \{x_{i}\}$ could be partitioned into two sets that sum of elements of first set is equal to the sum of the elements of the other. Prove that all of $x_{i}$'s are zero. [hide="Hint"]It is a number theory problem.[/hide]

2001 Taiwan National Olympiad, 3

Let $n\ge 3$ be an integer and let $A_{1}, A_{2},\dots, A_{n}$ be $n$ distinct subsets of $S=\{1, 2,\dots, n\}$. Show that there exists $x\in S$ such that the n subsets $A_{i}-\{x\}, i=1,2,\dots n$ are also disjoint. what i have is [hide="this"]we may assume that the union of the $A_{i}$s is $S$. [/hide]

1979 IMO Longlists, 24

Let $a$ and $b$ be coprime integers, greater than or equal to $1$. Prove that all integers $n$ greater than or equal to $(a - 1)(b - 1)$ can be written in the form: \[n = ua + vb, \qquad \text{with} (u, v) \in \mathbb N \times \mathbb N.\]

2009 Brazil National Olympiad, 3

There are $ 2009$ pebbles in some points $ (x,y)$ with both coordinates integer. A operation consists in choosing a point $ (a,b)$ with four or more pebbles, removing four pebbles from $ (a,b)$ and putting one pebble in each of the points \[ (a,b\minus{}1),\ (a,b\plus{}1),\ (a\minus{}1,b),\ (a\plus{}1,b)\] Show that after a finite number of operations each point will necessarily have at most three pebbles. Prove that the final configuration doesn't depend on the order of the operations.

1998 Putnam, 5

Tags: search
Let $N$ be the positive integer with 1998 decimal digits, all of them 1; that is, \[N=1111\cdots 11.\] Find the thousandth digit after the decimal point of $\sqrt N$.

2010 Today's Calculation Of Integral, 611

Let $g(t)$ be the minimum value of $f(x)=x2^{-x}$ in $t\leq x\leq t+1$. Evaluate $\int_0^2 g(t)dt$. [i]2010 Kumamoto University entrance exam/Science[/i]

2011 Romania Team Selection Test, 3

The incircle of a triangle $ABC$ touches the sides $BC,CA,AB$ at points $D,E,F$, respectively. Let $X$ be a point on the incircle, different from the points $D,E,F$. The lines $XD$ and $EF,XE$ and $FD,XF$ and $DE$ meet at points $J,K,L$, respectively. Let further $M,N,P$ be points on the sides $BC,CA,AB$, respectively, such that the lines $AM,BN,CP$ are concurrent. Prove that the lines $JM,KN$ and $LP$ are concurrent. [i]Dinu Serbanescu[/i]

2006 Hungary-Israel Binational, 3

A group of $ 100$ students numbered $ 1$ through $ 100$ are playing the following game. The judge writes the numbers $ 1$, $ 2$, $ \ldots$, $ 100$ on $ 100$ cards, places them on the table in an arbitrary order and turns them over. The students $ 1$ to $ 100$ enter the room one by one, and each of them flips $ 50$ of the cards. If among the cards flipped by student $ j$ there is card $ j$, he gains one point. The flipped cards are then turned over again. The students cannot communicate during the game nor can they see the cards flipped by other students. The group wins the game if each student gains a point. Is there a strategy giving the group more than $ 1$ percent of chance to win?

2007 Vietnam Team Selection Test, 3

Given a triangle $ABC$. Find the minimum of \[\frac{\cos^{2}\frac{A}{2}\cos^{2}\frac{B}{2}}{\cos^{2}\frac{C}{2}}+\frac{\cos^{2}\frac{B}{2}\cos^{2}\frac{C}{2}}{\cos^{2}\frac{A}{2}}+\frac{\cos^{2}\frac{C}{2}\cos^{2}\frac{A}{2}}{\cos^{2}\frac{B}{2}}. \]