This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 473

1987 AIME Problems, 2

What is the largest possible distance between two points, one on the sphere of radius 19 with center $(-2, -10, 5)$ and the other on the sphere of radius 87 with center $(12, 8, -16)$?

1990 AMC 12/AHSME, 25

Nine congruent spheres are packed inside a unit cube in such a way that one of them has its center at the center of the cube and each of the others is tangent to the center sphere and to three faces of the cube. What is the radius of each sphere? $ \textbf{(A)}\ 1-\frac{\sqrt{3}}{2} \qquad\textbf{(B)}\ \frac{2\sqrt{3}-3}{2} \qquad\textbf{(C)}\ \frac{\sqrt{2}}{6} \qquad\textbf{(D)}\ \frac{1}{4} \qquad\textbf{(E)}\ \frac{\sqrt{3}(2-\sqrt{2})}{4} $

2011 Mediterranean Mathematics Olympiad, 3

A regular tetrahedron of height $h$ has a tetrahedron of height $xh$ cut off by a plane parallel to the base. When the remaining frustrum is placed on one of its slant faces on a horizontal plane, it is just on the point of falling over. (In other words, when the remaining frustrum is placed on one of its slant faces on a horizontal plane, the projection of the center of gravity G of the frustrum is a point of the minor base of this slant face.) Show that $x$ is a root of the equation $x^3 + x^2 + x = 2$.

2003 National High School Mathematics League, 11

Eight spheres with radius of $1$ are put into a circular column. There are two floors, and each sphere is tangent to adjacent four spheres, one of the bottom surfaces, and the flank. Then the height of the circular column is________.

2015 Israel National Olympiad, 5

Let $ABCD$ be a tetrahedron. Denote by $S_1$ the inscribed sphere inside it, which is tangent to all four faces. Denote by $S_2$ the outer escribed sphere outside $ABC$, tangent to face $ABC$ and to the planes containing faces $ABD,ACD,BCD$. Let $K$ be the tangency point of $S_1$ to the face $ABC$, and let $L$ be the tangency point of $S_2$ to the face $ABC$. Let $T$ be the foot of the perpendicular from $D$ to the face $ABC$. Prove that $L,T,K$ lie on one line.

2005 iTest, 12

A sphere sits inside a cubic box, tangent on all $6$ sides of the box. If a side of the box is $5$, and the volume of the sphere is $x\pi$ , find $x$.

2019 Indonesia Juniors, day 2

P6. Determine all integer pairs $(x, y)$ satisfying the following system of equations. \[ \begin{cases} x + y - 6 &= \sqrt{2x + y + 1} \\ x^2 - x &= 3y + 5 \end{cases} \] P7. Determine the sum of all (positive) integers $n \leq 2019$ such that $1^2 + 2^2 + 3^2 + \cdots + n^2$ is an odd number and $1^1 + 2^2 + 3^3 + \cdots + n^n$ is also an odd number. P8. Two quadrilateral-based pyramids where the length of all its edges are the same, have their bases coincide, forming a new 3D figure called "8-plane" (octahedron). If the volume of such "8-plane" (octahedron) is $a^3\sqrt{2}$ cm$^3$, determine the volume of the largest sphere that can be fit inside such "8-plane" (octahedron). P9. Six-digit numbers $\overline{ABCDEF}$ with distinct digits are arranged from the digits 1, 2, 3, 4, 5, 6, 7, 8 with the rule that the sum of the first three numbers and the sum of the last three numbers are the same. Determine the probability that such arranged number has the property that either the first or last three digits (might be both) form an arithmetic sequence or a geometric sequence. [hide=Remarks (Answer spoiled)]It's a bit ambiguous whether the first or last three digits mentioned should be in that order, or not. If it should be in that order, the answer to this problem would be $\frac{1}{9}$, whereas if not, it would be $\frac{1}{3}$. Some of us agree that the correct interpretation should be the latter (which means that it's not in order) and the answer should be $\frac{1}{3}$. However since this is an essay problem, your interpretation can be written in your solution as well and it's left to the judges' discretion to accept your interpretation, or not. This problem is very bashy.[/hide] P10. $X_n$ denotes the number which is arranged by the digit $X$ written (concatenated) $n$ times. As an example, $2_{(3)} = 222$ and $5_{(2)} = 55$. For $A, B, C \in \{1, 2, \ldots, 9\}$ and $1 \leq n \leq 2019$, determine the number of ordered quadruples $(A, B, C, n)$ satisfying: \[ A_{(2n)} = 2 \left ( B_{(n)} \right ) + \left ( C_{(n)} \right )^2. \]

2016 Junior Regional Olympiad - FBH, 5

$605$ spheres of same radius are divided in two parts. From one part, upright "pyramid" is made with square base. From the other part, upright "pyramid" is made with equilateral triangle base. Both "pyramids" are put together from equal numbers of sphere rows. Find number of spheres in every "pyramid"

2015 Oral Moscow Geometry Olympiad, 5

A triangle $ABC$ and spheres are given in space $S_1$ and $S_2$, each of which passes through points $A, B$ and $C$. For points $M$ spheres $S_1$ not lying in the plane of triangle $ABC$ are drawn lines $MA, MB$ and $MC$, intersecting the sphere $S_2$ for the second time at points $A_1,B_1$ and $C_1$, respectively. Prove that the planes passing through points $A_1, B_1$ and $C_1$, touch a fixed sphere or pass through a fixed point.

1989 Romania Team Selection Test, 4

Let $A,B,C$ be variable points on edges $OX,OY,OZ$ of a trihedral angle $OXYZ$, respectively. Let $OA = a, OB = b, OC = c$ and $R$ be the radius of the circumsphere $S$ of $OABC$. Prove that if points $A,B,C$ vary so that $a+b+c = R+l$, then the sphere $S$ remains tangent to a fixed sphere.

1978 USAMO, 4

(a) Prove that if the six dihedral (i.e. angles between pairs of faces) of a given tetrahedron are congruent, then the tetrahedron is regular. (b) Is a tetrahedron necessarily regular if five dihedral angles are congruent?

1997 Estonia National Olympiad, 3

A sphere is inscribed in a regular tetrahedron. Another regular tetrahedron is inscribed in the sphere. Find the ratio of the volumes of these two tetrahedra.

2002 Polish MO Finals, 2

There is given a triangle $ABC$ in a space. A sphere does not intersect the plane of $ABC$. There are $4$ points $K, L, M, P$ on the sphere such that $AK, BL, CM$ are tangent to the sphere and $\frac{AK}{AP} = \frac{BL}{BP} = \frac{CM}{CP}$. Show that the sphere touches the circumsphere of $ABCP$.

1987 China National Olympiad, 5

Let $A_1A_2A_3A_4$ be a tetrahedron. We construct four mutually tangent spheres $S_1,S_2,S_3,S_4$ with centers $A_1,A_2,A_3,A_4$ respectively. Suppose that there exists a point $Q$ such that we can construct two spheres centered at $Q$ satisfying the following conditions: i) One sphere with radius $r$ is tangent to $S_1,S_2,S_3,S_4$; ii) One sphere with radius $R$ is tangent to every edges of tetrahedron $A_1A_2A_3A_4$. Prove that $A_1A_2A_3A_4$ is a regular tetrahedron.

1976 Bundeswettbewerb Mathematik, 4

Each vertex of the 3-dimensional Euclidean space either is coloured red or blue. Prove that within those squares being possible in this space with edge length 1 there is at least one square either with three red vertices or four blue vertices !

2003 AMC 12-AHSME, 13

An ice cream cone consists of a sphere of vanilla ice cream and a right circular cone that has the same diameter as the sphere. If the ice cream melts, it will exactly fill the cone. Assume that the melted ice cream occupies $ 75\%$ of the volume of the frozen ice cream. What is the ratio of the cone’s height to its radius? $ \textbf{(A)}\ 2: 1 \qquad \textbf{(B)}\ 3: 1 \qquad \textbf{(C)}\ 4: 1 \qquad \textbf{(D)}\ 16: 3 \qquad \textbf{(E)}\ 6: 1$

1967 Miklós Schweitzer, 7

Let $ U$ be an $ n \times n$ orthogonal matrix. Prove that for any $ n \times n$ matrix $ A$, the matrices \[ A_m=\frac{1}{m+1} \sum_{j=0}^m U^{-j}AU^j\] converge entrywise as $ m \rightarrow \infty.$ [i]L. Kovacs[/i]

1990 Iran MO (2nd round), 1

[b](a)[/b] Consider the set of all triangles $ABC$ which are inscribed in a circle with radius $R.$ When is $AB^2+BC^2+CA^2$ maximum? Find this maximum. [b](b)[/b] Consider the set of all tetragonals $ABCD$ which are inscribed in a sphere with radius $R.$ When is the sum of squares of the six edges of $ABCD$ maximum? Find this maximum, and in this case prove that all of the edges are equal.

2003 Polish MO Finals, 5

The sphere inscribed in a tetrahedron $ABCD$ touches face $ABC$ at point $H$. Another sphere touches face $ABC$ at $O$ and the planes containing the other three faces at points exterior to the faces. Prove that if $O$ is the circumcenter of triangle $ABC$, then $H$ is the orthocenter of that triangle.

2009 Polish MO Finals, 5

A sphere is inscribed in tetrahedron $ ABCD$ and is tangent to faces $ BCD,CAD,ABD,ABC$ at points $ P,Q,R,S$ respectively. Segment $ PT$ is the sphere's diameter, and lines $ TA,TQ,TR,TS$ meet the plane $ BCD$ at points $ A',Q',R',S'$. respectively. Show that $ A$ is the center of a circumcircle on the triangle $ S'Q'R'$.

1990 Bundeswettbewerb Mathematik, 4

In the plane there is a worm of length 1. Prove that it can be always covered by means of half of a circular disk of diameter 1. [i]Note.[/i] Under a "worm", we understand a continuous curve. The "half of a circular disk" is a semicircle including its boundary.

Champions Tournament Seniors - geometry, 2008.4

Given a quadrangular pyramid $SABCD$, the basis of which is a convex quadrilateral $ABCD$. It is known that the pyramid can be tangent to a sphere. Let $P$ be the point of contact of this sphere with the base $ABCD$. Prove that $\angle APB + \angle CPD = 180^o$.

2010 Albania Team Selection Test, 5

[b]a)[/b] Let's consider a finite number of big circles of a sphere that do not pass all from a point. Show that there exists such a point that is found only in two of the circles. (With big circle we understand the circles with radius equal to the radius of the sphere.) [b]b)[/b] Using the result of part $a)$ show that, for a set of $n$ points in a plane, that are not all in a line, there exists a line that passes through only two points of the given set.

1988 China National Olympiad, 5

Given three tetrahedrons $A_iB_i C_i D_i$ ($i=1,2,3$), planes $\alpha _i,\beta _i,\gamma _i$ ($i=1,2,3$) are drawn through $B_i ,C_i ,D_i$ respectively, and they are perpendicular to edges $A_i B_i, A_i C_i, A_i D_i$ ($i=1,2,3$) respectively. Suppose that all nine planes $\alpha _i,\beta _i,\gamma _i$ ($i=1,2,3$) meet at a point $E$, and points $A_1,A_2,A_3$ lie on line $l$. Determine the intersection (shape and position) of the circumscribed spheres of the three tetrahedrons.

1988 IMO Longlists, 59

In $3$-dimensional space there is given a point $O$ and a finite set $A$ of segments with the sum of lengths equal to $1988$. Prove that there exists a plane disjoint from $A$ such that the distance from it to $O$ does not exceed $574$.