This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 473

1991 Mexico National Olympiad, 3

Four balls of radius $1$ are placed in space so that each of them touches the other three. What is the radius of the smallest sphere containing all of them?

2004 AMC 12/AHSME, 19

A truncated cone has horizontal bases with radii $ 18$ and $ 2$. A sphere is tangent to the top, bottom, and lateral surface of the truncated cone. What is the radius of the sphere? $ \textbf{(A)}\ 6 \qquad \textbf{(B)}\ 4\sqrt5 \qquad \textbf{(C)}\ 9 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 6\sqrt3$

2009 Iran MO (3rd Round), 7

A sphere is inscribed in polyhedral $P$. The faces of $P$ are coloured with black and white in a way that no two black faces share an edge. Prove that the sum of surface of black faces is less than or equal to the sum of the surface of the white faces. Time allowed for this problem was 1 hour.

2006 Polish MO Finals, 2

Tetrahedron $ABCD$ in which $AB=CD$ is given. Sphere inscribed in it is tangent to faces $ABC$ and $ABD$ respectively in $K$ and $L$. Prove that if points $K$ and $L$ are centroids of faces $ABC$ and $ABD$ then tetrahedron $ABCD$ is regular.

1987 IMO Longlists, 38

Let $S_1$ and $S_2$ be two spheres with distinct radii that touch externally. The spheres lie inside a cone $C$, and each sphere touches the cone in a full circle. Inside the cone there are $n$ additional solid spheres arranged in a ring in such a way that each solid sphere touches the cone $C$, both of the spheres $S_1$ and $S_2$ externally, as well as the two neighboring solid spheres. What are the possible values of $n$? [i]Proposed by Iceland.[/i]

2019 BMT Spring, Tie 4

Consider a regular triangular pyramid with base $\vartriangle ABC$ and apex $D$. If we have $AB = BC =AC = 6$ and $AD = BD = CD = 4$, calculate the surface area of the circumsphere of the pyramid.

1987 IMO Shortlist, 10

Let $S_1$ and $S_2$ be two spheres with distinct radii that touch externally. The spheres lie inside a cone $C$, and each sphere touches the cone in a full circle. Inside the cone there are $n$ additional solid spheres arranged in a ring in such a way that each solid sphere touches the cone $C$, both of the spheres $S_1$ and $S_2$ externally, as well as the two neighboring solid spheres. What are the possible values of $n$? [i]Proposed by Iceland.[/i]

2018 PUMaC Geometry B, 2

Let a right cone of the base radius $r=3$ and height greater than $6$ be inscribed in a sphere of radius $R=6$. The volume of the cone can be expressed as $\pi(a\sqrt{b}+c)$, where $b$ is square free. Find $a+b+c$.

1992 Poland - Second Round, 5

Determine the upper limit of the volume of spheres contained in tetrahedra of all heights not longer than $ 1 $.

1986 Balkan MO, 2

Let $ABCD$ be a tetrahedron and let $E,F,G,H,K,L$ be points lying on the edges $AB,BC,CD$ $,DA,DB,DC$ respectively, in such a way that \[AE \cdot BE = BF \cdot CF = CG \cdot AG= DH \cdot AH=DK \cdot BK=DL \cdot CL.\] Prove that the points $E,F,G,H,K,L$ all lie on a sphere.

2002 Iran Team Selection Test, 7

$S_{1},S_{2},S_{3}$ are three spheres in $\mathbb R^{3}$ that their centers are not collinear. $k\leq8$ is the number of planes that touch three spheres. $A_{i},B_{i},C_{i}$ is the point that $i$-th plane touch the spheres $S_{1},S_{2},S_{3}$. Let $O_{i}$ be circumcenter of $A_{i}B_{i}C_{i}$. Prove that $O_{i}$ are collinear.

2010 All-Russian Olympiad, 1

Let $a \neq b a,b \in \mathbb{R}$ such that $(x^2+20ax+10b)(x^2+20bx+10a)=0$ has no roots for $x$. Prove that $20(b-a)$ is not an integer.

2016 All-Russian Olympiad, 2

In the space given three segments $A_1A_2, B_1B_2$ and $C_1C_2$, do not lie in one plane and intersect at a point $P$. Let $O_{ijk}$ be center of sphere that passes through the points $A_i, B_j, C_k$ and $P$. Prove that $O_{111}O_{222}, O_{112}O_{221}, O_{121}O_{212}$ and$O_{211}O_{122}$ intersect at one point. (P.Kozhevnikov)

2002 Moldova National Olympiad, 3

Let $ P$ be a polyhedron whose all edges are congruent and tangent to a sphere. Suppose that one of the facesof $ P$ has an odd number of sides. Prove that all vertices of $ P$ lie on a single sphere.

1968 Czech and Slovak Olympiad III A, 4

Four different points $A,B,C,D$ are given in space such that $AC\perp BD,AD\perp BC.$ Show there is a sphere containing midpoits of all 7 segments $AB,AC,AD,BC,BD,CD.$

1966 IMO Shortlist, 56

In a tetrahedron, all three pairs of opposite (skew) edges are mutually perpendicular. Prove that the midpoints of the six edges of the tetrahedron lie on one sphere.

1992 Romania Team Selection Test, 3

Let $ABCD$ be a tetrahedron; $B', C', D'$ be the midpoints of the edges $AB, AC, AD$; $G_A, G_B, G_C, G_D$ be the barycentres of the triangles $BCD, ACD, ABD, ABC$, and $G$ be the barycentre of the tetrahedron. Show that $A, G, G_B, G_C, G_D$ are all on a sphere if and only if $A, G, B', C', D'$ are also on a sphere. [i]Dan Brânzei[/i]

2003 Austrian-Polish Competition, 6

$ABCD$ is a tetrahedron such that we can find a sphere $k(A,B,C)$ through $A, B, C$ which meets the plane $BCD$ in the circle diameter $BC$, meets the plane $ACD$ in the circle diameter $AC$, and meets the plane $ABD$ in the circle diameter $AB$. Show that there exist spheres $k(A,B,D)$, $k(B,C,D)$ and $k(C,A,D)$ with analogous properties.

1981 Romania Team Selection Tests, 3.

Consider three fixed spheres $S_1, S_2, S_3$ with pairwise disjoint interiors. Determine the locus of the centre of the sphere intersecting each $S_i$ along a great circle of $S_i$. [i]Stere Ianuș[/i]

2014 NIMO Summer Contest, 3

A square and equilateral triangle have the same perimeter. If the triangle has area $16\sqrt3$, what is the area of the square? [i]Proposed by Evan Chen[/i]

1966 AMC 12/AHSME, 19

Let $s_1$ be the sum of the first $n$ terms of the arithmetic sequence $8,12,\cdots$ and let $s_2$ be the sum of the first $n$ terms of the arithmetic sequence $17,19\cdots$. Assume $n\ne 0$. Then $s_1=s_2$ for: $\text{(A)} \ \text{no value of n} \qquad \text{(B)} \ \text{one value of n} \qquad \text{(C)} \ \text{two values of n}$ $\text{(D)} \ \text{four values of n} \qquad \text{(E)} \ \text{more than four values of n}$

MIPT Undergraduate Contest 2019, 1.4

Suppose that in a unit sphere in Euclidean space, there are $2m$ points $x_1, x_2, ..., x_{2m}.$ Prove that it's possible to partition them into two sets of $m$ points in such a way that the centers of mass of these sets are at a distance of at most $\frac{2}{\sqrt{m}}$ from one another.

1972 Polish MO Finals, 4

Points $A$ and $B$ are given on a line having no common points with a sphere $K$. The feet $P$ of the perpendicular from the center of $K$ to the line $AB$ is positioned between $A$ and $B$, and the lengths of segments $AP$ and $BP$ both exceed the radius of $K$. Consider the set $Z$ of all triangles $ABC$ whose sides $AC$ and $BC$ are tangent to $K$. Prove that among all triangles in $Z$, a triangle $T$ with a maximum perimeter also has a maximum area.

2000 Bundeswettbewerb Mathematik, 3

For each vertex of a given tetrahedron, a sphere passing through that vertex and the midpoints of the edges outgoing from this vertex is constructed. Prove that these four spheres pass through a single point.

2013 AMC 10, 22

Six spheres of radius $1$ are positioned so that their centers are at the vertices of a regular hexagon of side length $2$. The six spheres are internally tangent to a larger sphere whose center is the center of the hexagon. An eighth sphere is externally tangent to the six smaller spheres and internally tangent to the larger sphere. What is the radius of this eighth sphere? $ \textbf{(A)} \ \sqrt{2} \qquad \textbf{(B)} \ \frac{3}{2} \qquad \textbf{(C)} \ \frac{5}{3} \qquad \textbf{(D)} \ \sqrt{3} \qquad \textbf{(E)} \ 2$