This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 473

1982 IMO Longlists, 10

Let $r_1, \ldots , r_n$ be the radii of $n$ spheres. Call $S_1, S_2, \ldots , S_n$ the areas of the set of points of each sphere from which one cannot see any point of any other sphere. Prove that \[\frac{S_1}{r_1^2} + \frac{S_2}{r_2^2}+\cdots+\frac{S_n}{r_n^2} = 4 \pi.\]

2021 Belarusian National Olympiad, 11.8

Watermelon(a sphere) with radius $R$ lies on a table. $n$ flies fly above the table, each at distance $\sqrt{2}R$ from the center of the watermelon. At some moment any fly couldn't see any of the other flies. (Flies can't see each other, if the segment connecting them intersects or touches watermelon). Find the maximum possible value of $n$

1995 National High School Mathematics League, 8

Consider the maximum value of circular cone inscribed to a sphere, the ratio of it to the volume of the sphere is________.

2016 Miklós Schweitzer, 7

Tags: sphere , topology
Show that the unit sphere bundle of the $r$-fold direct sum of the tautological (universal) complex line bundle over the space $\mathbb{C}P^{\infty}$ is homotopically equivalent to $\mathbb{C}P^{r-1}$.

1982 Brazil National Olympiad, 6

Five spheres of radius $r$ are inside a right circular cone. Four of the spheres lie on the base of the cone. Each touches two of the others and the sloping sides of the cone. The fifth sphere touches each of the other four and also the sloping sides of the cone. Find the volume of the cone.

1988 Polish MO Finals, 3

Find the largest possible volume for a tetrahedron which lies inside a hemisphere of radius $1$.

1990 National High School Mathematics League, 15

In pyramid $M-ABCD$, bottom surface $ABCD$ is a square. $MA=MC,MA\perp AB$. If the area of $\triangle AMD$ is $1$, find the maximum value of radius of sphere that can be put inside the pyramid.

2022 239 Open Mathematical Olympiad, 2

Five edges of a tetrahedron are tangent to a sphere. Prove that there are another five edges from this tetrahedron that are also tangent to a $($not necessarily the same$)$ sphere.

1980 IMO, 5

In the Euclidean three-dimensional space, we call [i]folding[/i] of a sphere $S$ every partition of $S \setminus \{x,y\}$ into disjoint circles, where $x$ and $y$ are two points of $S$. A folding of $S$ is called [b]linear[/b] if the circles of the [i]folding[/i] are obtained by the intersection of $S$ with a family of parallel planes or with a family of planes containing a straight line $D$ exterior to $S$. Is every [i]folding[/i] of a sphere $S$ [b]linear[/b]?

2016 Romania National Olympiad, 3

We say that a rational number is [i]spheric[/i] if it is the sum of three squares of rational numbers (not necessarily distinct). Prove that: [b]a)[/b] $ 7 $ is not spheric. [b]b)[/b] a rational spheric number raised to the power of any natural number greater than $ 1 $ is spheric.

1951 Moscow Mathematical Olympiad, 203

A sphere is inscribed in an $n$-angled pyramid. Prove that if we align all side faces of the pyramid with the base plane, flipping them around the corresponding edges of the base, then (1) all tangent points of these faces to the sphere would coincide with one point, $H$, and (2) the vertices of the faces would lie on a circle centered at $H$.

2003 All-Russian Olympiad Regional Round, 11.7

Given a tetrahedron $ABCD.$ The sphere $\omega$ inscribed in it touches the face $ABC$ at point $T$. Sphere $\omega' $ touches face $ABC$ at point $T'$ and extensions of faces $ABD$, $BCD$, $CAD$. Prove that the lines $AT$ and $AT'$ are symmetric wrt bisector of angle $\angle BAC$

1990 IMO Shortlist, 10

A plane cuts a right circular cone of volume $ V$ into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the volume of the smaller part. [i]Original formulation:[/i] A plane cuts a right circular cone into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the ratio of the volume of the smaller part to the volume of the whole cone.

2018 Iran MO (1st Round), 25

Tags: geometry , sphere , physics
Astrophysicists have discovered a minor planet of radius $30$ kilometers whose surface is completely covered in water. A spherical meteor hits this planet and is submerged in the water. This incidence causes an increase of $1$ centimeters to the height of the water on this planet. What is the radius of the meteor in meters?

1902 Eotvos Mathematical Competition, 2

Let $S$ be a given sphere with center $O$ and radius $r$. Let $P$ be any point outside then sphere $S$, and let $S'$ be the sphere with center $P$ and radius $PO$. Denote by $F$ the area of the surface of the part of $S'$ that lies inside $S$. Prove that $F$ is independent of the particular point $P$ chosen.

2016 Purple Comet Problems, 30

Some identically sized spheres are piled in $n$ layers in the shape of a square pyramid with one sphere in the top layer, 4 spheres in the second layer, 9 spheres in the third layer, and so forth so that the bottom layer has a square array of $n^2$ spheres. In each layer the centers of the spheres form a square grid so that each sphere is tangent to any sphere adjacent to it on the grid. Each sphere in an upper level is tangent to the four spheres directly below it. The diagram shows how the first three layers of spheres are stacked. A square pyramid is built around the pile of spheres so that the sides of the pyramid are tangent to the spheres on the outside of the pile. There is a positive integer $m$ such that as $n$ gets large, the ratio of the volume of the pyramid to the total volume inside all of the spheres approaches $\frac{\sqrt{m}}{\pi}$. Find $m$. [center][img]https://snag.gy/bIwyl6.jpg[/img][/center]

2014 AMC 12/AHSME, 19

A sphere is inscribed in a truncated right circular cone as shown. The volume of the truncated cone is twice that of the sphere. What is the ratio of the radius of the bottom base of the truncated cone to the radius of the top base of the truncated cone? [asy] real r=(3+sqrt(5))/2; real s=sqrt(r); real Brad=r; real brad=1; real Fht = 2*s; import graph3; import solids; currentprojection=orthographic(1,0,.2); currentlight=(10,10,5); revolution sph=sphere((0,0,Fht/2),Fht/2); //draw(surface(sph),green+white+opacity(0.5)); //triple f(pair t) {return (t.x*cos(t.y),t.x*sin(t.y),t.x^(1/n)*sin(t.y/n));} triple f(pair t) { triple v0 = Brad*(cos(t.x),sin(t.x),0); triple v1 = brad*(cos(t.x),sin(t.x),0)+(0,0,Fht); return (v0 + t.y*(v1-v0)); } triple g(pair t) { return (t.y*cos(t.x),t.y*sin(t.x),0); } surface sback=surface(f,(3pi/4,0),(7pi/4,1),80,2); surface sfront=surface(f,(7pi/4,0),(11pi/4,1),80,2); surface base = surface(g,(0,0),(2pi,Brad),80,2); draw(sback,rgb(0,1,0)); draw(sfront,rgb(.3,1,.3)); draw(base,rgb(.4,1,.4)); draw(surface(sph),rgb(.3,1,.3)); [/asy] $ \textbf {(A) } \dfrac {3}{2} \qquad \textbf {(B) } \dfrac {1+\sqrt{5}}{2} \qquad \textbf {(C) } \sqrt{3} \qquad \textbf {(D) } 2 \qquad \textbf {(E) } \dfrac {3+\sqrt{5}}{2} $

2002 Iran Team Selection Test, 3

A "[i]2-line[/i]" is the area between two parallel lines. Length of "2-line" is distance of two parallel lines. We have covered unit circle with some "2-lines". Prove sum of lengths of "2-lines" is at least 2.

1990 IMO Longlists, 27

A plane cuts a right circular cone of volume $ V$ into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the volume of the smaller part. [i]Original formulation:[/i] A plane cuts a right circular cone into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the ratio of the volume of the smaller part to the volume of the whole cone.

1969 Czech and Slovak Olympiad III A, 6

A sphere with unit radius is given. Furthermore, circles $k_0,k_1,\ldots,k_n\ (n\ge3)$ of the same radius $r$ are given on the sphere. The circle $k_0$ is tangent to all other circles $k_i$ and every two circles $k_i,k_{i+1}$ are tangent for $i=1,\ldots,n$ (assuming $k_{n+1}=k_1$). a) Find relation between numbers $n,r.$ b) Determine for which $n$ the described situation can occur and compute the corresponding radius $r.$ (We say non-planar circles are tangent if they have only a single common point and their tangent lines in this point coincide.)

1982 IMO Shortlist, 18

Let $O$ be a point of three-dimensional space and let $l_1, l_2, l_3$ be mutually perpendicular straight lines passing through $O$. Let $S$ denote the sphere with center $O$ and radius $R$, and for every point $M$ of $S$, let $S_M$ denote the sphere with center $M$ and radius $R$. We denote by $P_1, P_2, P_3$ the intersection of $S_M$ with the straight lines $l_1, l_2, l_3$, respectively, where we put $P_i \neq O$ if $l_i$ meets $S_M$ at two distinct points and $P_i = O$ otherwise ($i = 1, 2, 3$). What is the set of centers of gravity of the (possibly degenerate) triangles $P_1P_2P_3$ as $M$ runs through the points of $S$?

2007 IMAR Test, 2

Denote by $ \mathcal{C}$ the family of all configurations $ C$ of $ N > 1$ distinct points on the sphere $ S^2,$ and by $ \mathcal{H}$ the family of all closed hemispheres $ H$ of $ S^2.$ Compute: $ \displaystyle\max_{H\in\mathcal{H}}\displaystyle\min_{C\in\mathcal{C}}|H\cap C|$, $ \displaystyle\min_{H\in\mathcal{H}}\displaystyle\max_{C\in\mathcal{C}}|H\cap C|$ $ \displaystyle\max_{C\in\mathcal{C}}\displaystyle\min_{H\in\mathcal{H}}|H\cap C|$ and $ \displaystyle\min_{C\in\mathcal{C}}\displaystyle\max_{H\in\mathcal{H}}|H\cap C|.$

2000 AIME Problems, 12

The points $A, B$ and $C$ lie on the surface of a sphere with center $O$ and radius 20. It is given that $AB=13, BC=14, CA=15,$ and that the distance from $O$ to triangle $ABC$ is $\frac{m\sqrt{n}}k,$ where $m, n,$ and $k$ are positive integers, $m$ and $k$ are relatively prime, and $n$ is not divisible by the square of any prime. Find $m+n+k.$

Today's calculation of integrals, 768

Let $r$ be a real such that $0<r\leq 1$. Denote by $V(r)$ the volume of the solid formed by all points of $(x,\ y,\ z)$ satisfying \[x^2+y^2+z^2\leq 1,\ x^2+y^2\leq r^2\] in $xyz$-space. (1) Find $V(r)$. (2) Find $\lim_{r\rightarrow 1-0} \frac{V(1)-V(r)}{(1-r)^{\frac 32}}.$ (3) Find $\lim_{r\rightarrow +0} \frac{V(r)}{r^2}.$

2005 Romania Team Selection Test, 3

Prove that if the distance from a point inside a convex polyhedra with $n$ faces to the vertices of the polyhedra is at most 1, then the sum of the distances from this point to the faces of the polyhedra is smaller than $n-2$. [i]Calin Popescu[/i]