This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 473

1968 Polish MO Finals, 3

In a tetrahedron $ ABCD $ the edges $AD$, $ BD $, $ CD $ are equal. $ ABC $ Non-collinear points are chosen in the plane. $ A_1$, $B_1$, $C_1 $ The lines $DA_1$, $DB_1$, $DC_1 $ intersect the surface of the sphere circumscribed about the tetrahedron at points $ A_2$, $B_2$, $C_2 $, different from the point $ D $. Prove that the points $A_1$, $B_1$, $C_1$, $A_2$, $B_2$, $C_2$ lie on the surface of a certain sphere.

1956 Putnam, B3

A sphere is inscribed in a tetrahedron and each point of contact of the sphere with the four faces is joined to the vertices of the face containing the point. Show that the four sets of three angles so formed are identical.

2014 AMC 10, 23

A sphere is inscribed in a truncated right circular cone as shown. The volume of the truncated cone is twice that of the sphere. What is the ratio of the radius of the bottom base of the truncated cone to the radius of the top base of the truncated cone? [asy] real r=(3+sqrt(5))/2; real s=sqrt(r); real Brad=r; real brad=1; real Fht = 2*s; import graph3; import solids; currentprojection=orthographic(1,0,.2); currentlight=(10,10,5); revolution sph=sphere((0,0,Fht/2),Fht/2); //draw(surface(sph),green+white+opacity(0.5)); //triple f(pair t) {return (t.x*cos(t.y),t.x*sin(t.y),t.x^(1/n)*sin(t.y/n));} triple f(pair t) { triple v0 = Brad*(cos(t.x),sin(t.x),0); triple v1 = brad*(cos(t.x),sin(t.x),0)+(0,0,Fht); return (v0 + t.y*(v1-v0)); } triple g(pair t) { return (t.y*cos(t.x),t.y*sin(t.x),0); } surface sback=surface(f,(3pi/4,0),(7pi/4,1),80,2); surface sfront=surface(f,(7pi/4,0),(11pi/4,1),80,2); surface base = surface(g,(0,0),(2pi,Brad),80,2); draw(sback,rgb(0,1,0)); draw(sfront,rgb(.3,1,.3)); draw(base,rgb(.4,1,.4)); draw(surface(sph),rgb(.3,1,.3)); [/asy] $ \textbf {(A) } \dfrac {3}{2} \qquad \textbf {(B) } \dfrac {1+\sqrt{5}}{2} \qquad \textbf {(C) } \sqrt{3} \qquad \textbf {(D) } 2 \qquad \textbf {(E) } \dfrac {3+\sqrt{5}}{2} $

1977 All Soviet Union Mathematical Olympiad, 241

Every vertex of a convex polyhedron belongs to three edges. It is possible to circumscribe a circle around all its faces. Prove that the polyhedron can be inscribed in a sphere.

2007 Princeton University Math Competition, 6

A sphere of radius $\sqrt{85}$ is centered at the origin in three dimensions. A tetrahedron with vertices at integer lattice points is inscribed inside the sphere. What is the maximum possible volume of this tetrahedron?

1963 IMO Shortlist, 2

Point $A$ and segment $BC$ are given. Determine the locus of points in space which are vertices of right angles with one side passing through $A$, and the other side intersecting segment $BC$.

2003 Mediterranean Mathematics Olympiad, 4

Consider a system of infinitely many spheres made of metal, with centers at points $(a, b, c) \in \mathbb Z^3$. We say that the system is stable if the temperature of each sphere equals the average temperature of the six closest spheres. Assuming that all spheres in a stable system have temperatures between $0^\circ C$ and $1^\circ C$, prove that all the spheres have the same temperature.

1966 German National Olympiad, 6

Prove the following theorem: If the intersection of any plane that has more than one point in common with the surface $F$ is a circle, then $F$ is a sphere (surface).

2014 All-Russian Olympiad, 2

The sphere $ \omega $ passes through the vertex $S$ of the pyramid $SABC$ and intersects with the edges $SA,SB,SC$ at $A_1,B_1,C_1$ other than $S$. The sphere $ \Omega $ is the circumsphere of the pyramid $SABC$ and intersects with $ \omega $ circumferential, lies on a plane which parallel to the plane $(ABC)$. Points $A_2,B_2,C_2$ are symmetry points of the points $A_1,B_1,C_1$ respect to midpoints of the edges $SA,SB,SC$ respectively. Prove that the points $A$, $B$, $C$, $A_2$, $B_2$, and $C_2$ lie on a sphere.

2023 Math Prize for Girls Problems, 14

Five points are chosen uniformly and independently at random on the surface of a sphere. Next, 2 of these 5 points are randomly picked, with every pair equally likely. What is the probability that the 2 points are separated by the plane containing the other 3 points?

2009 Purple Comet Problems, 24

A right circular cone pointing downward forms an angle of $60^\circ$ at its vertex. Sphere $S$ with radius $1$ is set into the cone so that it is tangent to the side of the cone. Three congruent spheres are placed in the cone on top of S so that they are all tangent to each other, to sphere $S$, and to the side of the cone. The radius of these congruent spheres can be written as $\tfrac{a+\sqrt{b}}{c}$ where $a$, $b$, and $c$ are positive integers such that $a$ and $c$ are relatively prime. Find $a + b + c$. [asy] size(150); real t=0.12; void ball(pair x, real r, real h, bool ww=true) { pair xx=yscale(t)*x+(0,h); path P=circle(xx,r); unfill(P); draw(P); if(ww) draw(ellipse(xx-(0,r/2),0.85*r,t*r)); } pair X=(0,0); real H=17, h=5, R=h/2; draw(H*dir(120)--(0,0)--H*dir(60)); draw(ellipse((0,0.87*H),H/2,t*H/2)); pair Y=(R,h+2*R),C=(0,h); real r; for(int k=0;k<20;++k) { r=-(dir(30)*Y).x; Y-=(sqrt(3)/2*Y.x-r,abs(Y-C)-R-r)/3; } ball(Y.x*dir(90),r,Y.y,false); ball(X,R,h); ball(Y.x*dir(-30),r,Y.y); ball(Y.x*dir(210),r,Y.y);[/asy]

2005 Oral Moscow Geometry Olympiad, 4

A sphere can be inscribed into a pyramid, the base of which is a parallelogram. Prove that the sums of the areas of its opposite side faces are equal. (M. Volchkevich)

2004 Miklós Schweitzer, 7

Suppose that the closed subset $K$ of the sphere $$S^2=\{ (x,y,z)\in \mathbb{R}^3\colon x^2+y^2+z^2=1 \}$$ is symmetric with respect to the origin and separates any two antipodal points in $S^2 \backslash K$. Prove that for any positive $\varepsilon$ there exists a homogeneous polynomial $P$ of odd degree such that the Hausdorff distance between $$Z(P)=\{ (x,y,z)\in S^2 \colon P(x,y,z)=0\}$$ and $K$ is less than $\varepsilon$.

2005 Iran MO (2nd round), 3

In one galaxy, there exist more than one million stars. Let $M$ be the set of the distances between any $2$ of them. Prove that, in every moment, $M$ has at least $79$ members. (Suppose each star as a point.)

1993 Vietnam National Olympiad, 1

The tetrahedron $ABCD$ has its vertices on the fixed sphere $S$. Prove that $AB^{2}+AC^{2}+AD^{2}-BC^{2}-BD^{2}-CD^{2}$ is minimum iff $AB\perp AC,AC\perp AD,AD\perp AB$.

1992 All Soviet Union Mathematical Olympiad, 575

A plane intersects a sphere in a circle $C$. The points $A$ and $B$ lie on the sphere on opposite sides of the plane. The line joining $A$ to the center of the sphere is normal to the plane. Another plane $p$ intersects the segment $AB$ and meets $C$ at $P$ and $Q$. Show that $BP\cdot BQ$ is independent of the choice of $p$.

2014 Contests, 3

A tetrahedron $ABCD$ with acute-angled faces is inscribed in a sphere with center $O$. A line passing through $O$ perpendicular to plane $ABC$ crosses the sphere at point $D'$ that lies on the opposide side of plane $ABC$ than point $D$. Line $DD'$ crosses plane $ABC$ in point $P$ that lies inside the triangle $ABC$. Prove, that if $\angle APB=2\angle ACB$, then $\angle ADD'=\angle BDD'$.

2022 JHMT HS, 9

Let $B$ and $D$ be two points chosen independently and uniformly at random from the unit sphere in 3D space centered at a point $A$ (this unit sphere is the set of all points in $\mathbb{R}^3$ a distance of $1$ away from $A$). Compute the expected value of $\sin^2\angle DAB$.

1967 Polish MO Finals, 6

Given a sphere and a plane that has no common points with the sphere. Find the geometric locus of the centers of the circles of tangency with the sphere of those cones circumcribed on the sphere whose vertices lie on the given plane.

2004 Bundeswettbewerb Mathematik, 4

A cube is decomposed in a finite number of rectangular parallelepipeds such that the volume of the cube's circum sphere volume equals the sum of the volumes of all parallelepipeds' circum spheres. Prove that all these parallelepipeds are cubes.

2014 Purple Comet Problems, 30

Three mutually tangent spheres each with radius $5$ sit on a horizontal plane. A triangular pyramid has a base that is an equilateral triangle with side length $6$, has three congruent isosceles triangles for vertical faces, and has height $12$. The base of the pyramid is parallel to the plane, and the vertex of the pyramid is pointing downward so that it is between the base and the plane. Each of the three vertical faces of the pyramid is tangent to one of the spheres at a point on the triangular face along its altitude from the vertex of the pyramid to the side of length $6$. The distance that these points of tangency are from the base of the pyramid is $\tfrac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [asy] size(200); defaultpen(linewidth(0.8)); pair X=(-.6,.4),A=(-.4,2),B=(-.7,1.85),C=(-1.1,2.05); picture spherex; filldraw(spherex,unitcircle,white); draw(spherex,(-1,0)..(-.2,-.2)..(1,0)^^(0,1)..(-.2,-.2)..(0,-1)); add(shift(-0.5,0.6)*spherex); filldraw(X--A--C--cycle,gray); draw(A--B--C^^X--B); add(shift(-1.5,0.2)*spherex); add(spherex); [/asy]

2007 AMC 10, 21

A sphere is inscribed in a cube that has a surface area of $ 24$ square meters. A second cube is then inscribed within the sphere. What is the surface area in square meters of the inner cube? $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ 12$

2014 District Olympiad, 3

Let $ABCDEF$ be a regular hexagon with side length $a$. At point $A$, the perpendicular $AS$, with length $2a\sqrt{3}$, is erected on the hexagon's plane. The points $M, N, P, Q,$ and $R$ are the projections of point $A$ on the lines $SB, SC, SD, SE,$ and $SF$, respectively. [list=a] [*]Prove that the points $M, N, P, Q, R$ lie on the same plane. [*]Find the measure of the angle between the planes $(MNP)$ and $(ABC)$.[/list]

2000 Iran MO (3rd Round), 2

Call two circles in three-dimensional space pairwise tangent at a point $ P$ if they both pass through $ P$ and lines tangent to each circle at $ P$ coincide. Three circles not all lying in a plane are pairwise tangent at three distinct points. Prove that there exists a sphere which passes through the three circles.

2021 AIME Problems, 10

Two spheres with radii $36$ and one sphere with radius $13$ are each externally tangent to the other two spheres and to two different planes $\mathcal{P}$ and $\mathcal{Q}$. The intersection of planes $\mathcal{P}$ and $\mathcal{Q}$ is the line $\ell$. The distance from line $\ell$ to the point where the sphere with radius $13$ is tangent to plane $\mathcal{P}$ is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [img]https://imgur.com/1mfBNNL.png[/img]