This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 473

2019 LIMIT Category C, Problem 10

A right circular cylinder is inscribed in a sphere of radius $\sqrt3$. What is the height of the cylinder when its volume is maximal?

2016 BMT Spring, 12

Consider a solid hemisphere of radius $1$. Find the distance from its center of mass to the base.

1996 ITAMO, 3

Given a cube of unit side. Let $A$ and $B$ be two opposite vertex. Determine the radius of the sphere, with center inside the cube, tangent to the three faces of the cube with common point $A$ and tangent to the three sides with common point $B$.

2022 CCA Math Bonanza, T3

The smallest possible volume of a cylinder that will fit nine spheres of radius 1 can be expressed as $x\pi$ for some value of $x$. Compute $x$. [i]2022 CCA Math Bonanza Team Round #3[/i]

2000 Harvard-MIT Mathematics Tournament, 8

Let $\vec{v_1},\vec{v_2},\vec{v_3},\vec{v_4}$ and $\vec{v_5}$ be vectors in three dimensions. Show that for some $i,j$ in $1,2,3,4,5$, $\vec{v_i}\cdot \vec{v_j}\ge 0$.

2004 IMC, 4

Suppose $n\geq 4$ and let $S$ be a finite set of points in the space ($\mathbb{R}^3$), no four of which lie in a plane. Assume that the points in $S$ can be colored with red and blue such that any sphere which intersects $S$ in at least 4 points has the property that exactly half of the points in the intersection of $S$ and the sphere are blue. Prove that all the points of $S$ lie on a sphere.

2008 Bundeswettbewerb Mathematik, 3

Through a point in the interior of a sphere we put three pairwise perpendicular planes. Those planes dissect the surface of the sphere in eight curvilinear triangles. Alternately the triangles are coloured black and wide to make the sphere surface look like a checkerboard. Prove that exactly half of the sphere's surface is coloured black.

1967 IMO Shortlist, 3

Determine the volume of the body obtained by cutting the ball of radius $R$ by the trihedron with vertex in the center of that ball, it its dihedral angles are $\alpha, \beta, \gamma.$

1956 Polish MO Finals, 6

Given a sphere of radius $ R $ and a plane $ \alpha $ having no common points with this sphere. A point $ S $ moves in the plane $ \alpha $, which is the vertex of a cone tangent to the sphere along a circle with center $ C $. Find the locus of point $ C $. [hide=another is Polish MO 1967 p6] [url=https://artofproblemsolving.com/community/c6h3388032p31769739]here[/url][/hide]

2021 Adygea Teachers' Geometry Olympiad, 4

Two identical balls of radius $\sqrt{15}$ and two identical balls of a smaller radius are located on a plane so that each ball touches the other three. Find the area of the surface $S$ of the ball with the smaller radius.

1980 Brazil National Olympiad, 4

Given $5$ points of a sphere radius $r$, show that two of the points are a distance $\le r \sqrt2$ apart.

1960 IMO Shortlist, 6

Consider a cone of revolution with an inscribed sphere tangent to the base of the cone. A cylinder is circumscribed about this sphere so that one of its bases lies in the base of the cone. let $V_1$ be the volume of the cone and $V_2$ be the volume of the cylinder. a) Prove that $V_1 \neq V_2$; b) Find the smallest number $k$ for which $V_1=kV_2$; for this case, construct the angle subtended by a diamter of the base of the cone at the vertex of the cone.

1994 Spain Mathematical Olympiad, 2

Let $Oxyz$ be a trihedron whose edges $x,y, z$ are mutually perpendicular. Let $C$ be the point on the ray $z$ with $OC = c$. Points $P$ and $Q$ vary on the rays $x$ and $y$ respectively in such a way that $OP+OQ = k$ is constant. For every $P$ and $Q$, the circumcenter of the sphere through $O,C,P,Q$ is denoted by $W$. Find the locus of the projection of $W$ on the plane O$xy$. Also find the locus of points $W$.

1994 Tuymaada Olympiad, 4

Let a convex polyhedron be given with volume $V$ and full surface $S$. Prove that inside a polyhedron it is possible to arrange a ball of radius $\frac{V}{S}$.

1966 IMO Longlists, 56

In a tetrahedron, all three pairs of opposite (skew) edges are mutually perpendicular. Prove that the midpoints of the six edges of the tetrahedron lie on one sphere.

1966 IMO, 3

Prove that the sum of the distances of the vertices of a regular tetrahedron from the center of its circumscribed sphere is less than the sum of the distances of these vertices from any other point in space.

2002 China Team Selection Test, 2

There are $ n$ points ($ n \geq 4$) on a sphere with radius $ R$, and not all of them lie on the same semi-sphere. Prove that among all the angles formed by any two of the $ n$ points and the sphere centre $ O$ ($ O$ is the vertex of the angle), there is at least one that is not less than $ \displaystyle 2 \arcsin{\frac{\sqrt{6}}{3}}$.

1995 ITAMO, 5

Two non-coplanar circles in space are tangent at a point and have the same tangents at this point. Show that both circles lie on some sphere.

2008 Iran MO (3rd Round), 6

There are five research labs on Mars. Is it always possible to divide Mars to five connected congruent regions such that each region contains exactly on research lab. [img]http://i37.tinypic.com/f2iq8g.png[/img]

Kyiv City MO 1984-93 - geometry, 1993.11.3

Two cubes are inscribed in a sphere of radius $R$. Calculate the sum of squares of all segments connecting the vertices of one cube with the vertices of the other cube

1973 IMO Shortlist, 1

Let a tetrahedron $ABCD$ be inscribed in a sphere $S$. Find the locus of points $P$ inside the sphere $S$ for which the equality \[\frac{AP}{PA_1}+\frac{BP}{PB_1}+\frac{CP}{PC_1}+\frac{DP}{PD_1}=4\] holds, where $A_1,B_1, C_1$, and $D_1$ are the intersection points of $S$ with the lines $AP,BP,CP$, and $DP$, respectively.

1988 IMO Longlists, 12

Show that there do not exist more than $27$ half-lines (or rays) emanating from the origin in the $3$-dimensional space, such that the angle between each pair of rays is $\geq \frac{\pi}{4}$.

2008 USAPhO, 2

A uniform pool ball of radius $r$ and mass $m$ begins at rest on a pool table. The ball is given a horizontal impulse $J$ of fixed magnitude at a distance $\beta r$ above its center, where $-1 \le \beta \le 1$. The coefficient of kinetic friction between the ball and the pool table is $\mu$. You may assume the ball and the table are perfectly rigid. Ignore effects due to deformation. (The moment of inertia about the center of mass of a solid sphere of mass $m$ and radius $r$ is $I_{cm} = \frac{2}{5}mr^2$.) [asy] size(250); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); filldraw(circle((0,0),1),gray(.8)); draw((-3,-1)--(3,-1)); draw((-2.4,0.1)--(-2.4,0.6),EndArrow); draw((-2.5,0)--(2.5,0),dashed); draw((-2.75,0.7)--(-0.8,0.7),EndArrow); label("$J$",(-2.8,0.7),W); label("$\beta r$",(-2.3,0.35),E); draw((0,-1.5)--(0,1.5),dashed); draw((1.7,-0.1)--(1.7,-0.9),BeginArrow,EndArrow); label("$r$",(1.75,-0.5),E); [/asy] (a) Find an expression for the final speed of the ball as a function of $J$, $m$, and $\beta$. (b) For what value of $\beta$ does the ball immediately begin to roll without slipping, regardless of the value of $\mu$?

1948 Putnam, A2

Two spheres in contact have a common tangent cone. These three surfaces divide the space into various parts, only one of which is bounded by all three surfaces, it is "ring-shaped." Being given the radii of the spheres, $r$ and $R$, find the volume of the "ring-shaped" part. (The desired expression is a rational function of $r$ and $R.$)

1991 Baltic Way, 18

Is it possible to place two non-intersecting tetrahedra of volume $\frac{1}{2}$ into a sphere with radius $1$?