Found problems: 473
1978 Swedish Mathematical Competition, 3
Two satellites are orbiting the earth in the equatorial plane at an altitude $h$ above the surface. The distance between the satellites is always $d$, the diameter of the earth. For which $h$ is there always a point on the equator at which the two satellites subtend an angle of $90^\circ$?
2014 Purple Comet Problems, 30
Three mutually tangent spheres each with radius $5$ sit on a horizontal plane. A triangular pyramid has a base that is an equilateral triangle with side length $6$, has three congruent isosceles triangles for vertical faces, and has height $12$. The base of the pyramid is parallel to the plane, and the vertex of the pyramid is pointing downward so that it is between the base and the plane. Each of the three vertical faces of the pyramid is tangent to one of the spheres at a point on the triangular face along its altitude from the vertex of the pyramid to the side of length $6$. The distance that these points of tangency are from the base of the pyramid is $\tfrac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
[asy]
size(200);
defaultpen(linewidth(0.8));
pair X=(-.6,.4),A=(-.4,2),B=(-.7,1.85),C=(-1.1,2.05);
picture spherex;
filldraw(spherex,unitcircle,white);
draw(spherex,(-1,0)..(-.2,-.2)..(1,0)^^(0,1)..(-.2,-.2)..(0,-1));
add(shift(-0.5,0.6)*spherex);
filldraw(X--A--C--cycle,gray);
draw(A--B--C^^X--B);
add(shift(-1.5,0.2)*spherex);
add(spherex);
[/asy]
1991 Arnold's Trivium, 70
Calculate the mean value of the solid angle by which the disc $x^2 + y^2 \le 1$ lying in the plane $z = 0$ is seen from points of the sphere $x^2 + y^2 + (z-2)^2 = 1$.
2003 AIME Problems, 5
Consider the set of points that are inside or within one unit of a rectangular parallelepiped (box) that measures 3 by 4 by 5 units. Given that the volume of this set is $(m + n \pi)/p$, where $m$, $n$, and $p$ are positive integers, and $n$ and $p$ are relatively prime, find $m + n + p$.
2016 HMNT, 9
A cylinder with radius $15$ and height $16$ is inscribed in a sphere. Three congruent smaller spheres of radius $x$ are externally tangent to the base of the cylinder, externally tangent to each other, and internally tangent to the large sphere. What is the value of $x$?
2009 Today's Calculation Of Integral, 402
Consider a right circular cylinder with radius $ r$ of the base, hight $ h$. Find the volume of the solid by revolving the cylinder about a diameter of the base.
VII Soros Olympiad 2000 - 01, 11.8
Three spheres are tangent to one plane, to a straight line perpendicular to this plane, and in pairs to each other. The radius of the largest sphere is $1$. Within what limits can the radius of the smallest sphere vary?
1982 IMO Longlists, 27
Let $O$ be a point of three-dimensional space and let $l_1, l_2, l_3$ be mutually perpendicular straight lines passing through $O$. Let $S$ denote the sphere with center $O$ and radius $R$, and for every point $M$ of $S$, let $S_M$ denote the sphere with center $M$ and radius $R$. We denote by $P_1, P_2, P_3$ the intersection of $S_M$ with the straight lines $l_1, l_2, l_3$, respectively, where we put $P_i \neq O$ if $l_i$ meets $S_M$ at two distinct points and $P_i = O$ otherwise ($i = 1, 2, 3$). What is the set of centers of gravity of the (possibly degenerate) triangles $P_1P_2P_3$ as $M$ runs through the points of $S$?
2000 Iran MO (3rd Round), 2
Call two circles in three-dimensional space pairwise tangent at a point $ P$ if they both pass through $ P$ and lines tangent to each circle at $ P$ coincide. Three circles not all lying in a plane are pairwise tangent at three distinct points. Prove that there exists a sphere which passes through the three circles.
1982 Miklós Schweitzer, 7
Let $ V$ be a bounded, closed, convex set in $ \mathbb{R}^n$, and denote by $ r$ the radius of its circumscribed sphere (that is, the radius of the smallest sphere that contains $ V$). Show that $ r$ is the only real number with the following property: for any finite number of points in $ V$, there exists a point in $ V$ such that the arithmetic mean of its distances from the other points is equal to $ r$.
[i]Gy. Szekeres[/i]
2010 German National Olympiad, 6
Let $A,B,C,D,E,F,G$ and $H$ be eight pairwise distinct points on the surface of a sphere. The quadruples $(A,B,C,D), (A,B,F,E),(B,C,G,F),(C,D,H,G)$ and $(D,A,E,H)$ of points are coplanar.
Prove that the quadruple $(E,F,G,H)$ is coplanar aswell.
2010 Albania Team Selection Test, 5
[b]a)[/b] Let's consider a finite number of big circles of a sphere that do not pass all from a point. Show that there exists such a point that is found only in two of the circles. (With big circle we understand the circles with radius equal to the radius of the sphere.)
[b]b)[/b] Using the result of part $a)$ show that, for a set of $n$ points in a plane, that are not all in a line, there exists a line that passes through only two points of the given set.
1968 Polish MO Finals, 3
In a tetrahedron $ ABCD $ the edges $AD$, $ BD $, $ CD $ are equal. $ ABC $ Non-collinear points are chosen in the plane. $ A_1$, $B_1$, $C_1 $ The lines $DA_1$, $DB_1$, $DC_1 $ intersect the surface of the sphere circumscribed about the tetrahedron at points $ A_2$, $B_2$, $C_2 $, different from the point $ D $. Prove that the points $A_1$, $B_1$, $C_1$, $A_2$, $B_2$, $C_2$ lie on the surface of a certain sphere.
1982 IMO Shortlist, 18
Let $O$ be a point of three-dimensional space and let $l_1, l_2, l_3$ be mutually perpendicular straight lines passing through $O$. Let $S$ denote the sphere with center $O$ and radius $R$, and for every point $M$ of $S$, let $S_M$ denote the sphere with center $M$ and radius $R$. We denote by $P_1, P_2, P_3$ the intersection of $S_M$ with the straight lines $l_1, l_2, l_3$, respectively, where we put $P_i \neq O$ if $l_i$ meets $S_M$ at two distinct points and $P_i = O$ otherwise ($i = 1, 2, 3$). What is the set of centers of gravity of the (possibly degenerate) triangles $P_1P_2P_3$ as $M$ runs through the points of $S$?
2016 Sharygin Geometry Olympiad, P23
A sphere touches all edges of a tetrahedron. Let $a, b, c$ and d be the segments of the tangents to the sphere from the vertices of the tetrahedron. Is it true that that some of these segments necessarily form a triangle?
(It is not obligatory to use all segments. The side of the triangle can be formed by two segments)
2002 China Team Selection Test, 2
There are $ n$ points ($ n \geq 4$) on a sphere with radius $ R$, and not all of them lie on the same semi-sphere. Prove that among all the angles formed by any two of the $ n$ points and the sphere centre $ O$ ($ O$ is the vertex of the angle), there is at least one that is not less than $ \displaystyle 2 \arcsin{\frac{\sqrt{6}}{3}}$.
1950 Moscow Mathematical Olympiad, 186
A spatial quadrilateral is circumscribed around a sphere. Prove that all the tangent points lie in one plane.
1966 IMO Shortlist, 56
In a tetrahedron, all three pairs of opposite (skew) edges are mutually perpendicular. Prove that the midpoints of the six edges of the tetrahedron lie on one sphere.
2014 Polish MO Finals, 3
A tetrahedron $ABCD$ with acute-angled faces is inscribed in a sphere with center $O$. A line passing through $O$ perpendicular to plane $ABC$ crosses the sphere at point $D'$ that lies on the opposide side of plane $ABC$ than point $D$. Line $DD'$ crosses plane $ABC$ in point $P$ that lies inside the triangle $ABC$. Prove, that if $\angle APB=2\angle ACB$, then $\angle ADD'=\angle BDD'$.
2005 Sharygin Geometry Olympiad, 20
Let $I$ be the center of the sphere inscribed in the tetrahedron $ABCD, A ', B', C ', D'$ be the centers of the spheres circumscribed around the tetrahedra $IBCD, ICDA, IDAB, IABC$, respectively. Prove that the sphere circumscribed around $ABCD$ lies entirely inside the circumscribed around $A'B'C'D '$.
1977 All Soviet Union Mathematical Olympiad, 241
Every vertex of a convex polyhedron belongs to three edges. It is possible to circumscribe a circle around all its faces. Prove that the polyhedron can be inscribed in a sphere.
2007 Polish MO Finals, 5
5. In tetrahedron $ABCD$ following equalities hold:
$\angle BAC+\angle BDC=\angle ABD+\angle ACD$
$\angle BAD+\angle BCD=\angle ABC+\angle ADC$
Prove that center of sphere circumscribed about ABCD lies on a line through midpoints of $AB$ and $CD$.
2002 Moldova National Olympiad, 3
Let $ P$ be a polyhedron whose all edges are congruent and tangent to a sphere. Suppose that one of the facesof $ P$ has an odd number of sides. Prove that all vertices of $ P$ lie on a single sphere.
2014 IPhOO, 14
A super ball rolling on the floor enters a half circular track (radius $R$). The ball rolls without slipping around the track and leaves (velocity $v$) traveling horizontally in the opposite direction. Afterwards, it bounces on the floor. How far (horizontally) from the end of the track will the ball bounce for the second time? The ball’s surface has a theoretically infinite coefficient of static friction. It is a perfect sphere of uniform density. All collisions with the ground are perfectly elastic and theoretically instantaneous. Variations could involve the initial velocity being given before the ball enters the track or state that the normal force between the ball and the track right before leaving is zero (centripetal acceleration).
[i]Problem proposed by Brian Yue[/i]
1992 USAMO, 4
Chords $AA^{\prime}$, $BB^{\prime}$, $CC^{\prime}$ of a sphere meet at an interior point $P$ but are not contained in a plane. The sphere through $A$, $B$, $C$, $P$ is tangent to the sphere through $A^{\prime}$, $B^{\prime}$, $C^{\prime}$, $P$. Prove that $\, AA' = BB' = CC'$.