Found problems: 473
2023 Sharygin Geometry Olympiad, 24
A tetrahedron $ABCD$ is give. A line $\ell$ meets the planes $ABC,BCD,CDA,DAB$ at points $D_0,A_0,B_0,C_0$ respectively. Let $P$ be an arbitrary point not lying on $\ell$ and the planes of the faces, and $A_1,B_1,C_1,D_1$ be the second common points of lines $PA_0,PB_0,PC_0,PD_0$ with the spheres $PBCD,PCDA,PDAB,PABC$ respectively. Prove $P,A_1,B_1,C_1,D_1$ lie on a circle.
2007 Iran MO (3rd Round), 7
A ring is the area between two circles with the same center, and width of a ring is the difference between the radii of two circles.
[img]http://i18.tinypic.com/6cdmvi8.png[/img]
a) Can we put uncountable disjoint rings of width 1(not necessarily same) in the space such that each two of them can not be separated.
[img]http://i19.tinypic.com/4qgx30j.png[/img]
b) What's the answer if 1 is replaced with 0?
1995 IberoAmerican, 3
Let $ r$ and $ s$ two orthogonal lines that does not lay on the same plane. Let $ AB$ be their common perpendicular, where $ A\in{}r$ and $ B\in{}s$(*).Consider the sphere of diameter $ AB$. The points $ M\in{r}$ and $ N\in{s}$ varies with the condition that $ MN$ is tangent to the sphere on the point $ T$. Find the locus of $ T$.
Note: The plane that contains $ B$ and $ r$ is perpendicular to $ s$.
2011 Tokyo Instutute Of Technology Entrance Examination, 2
For a positive real number $t$, in the coordiante space, consider 4 points $O(0,\ 0,\ 0),\ A(t,\ 0,\ 0),\ B(0,\ 1,\ 0),\ C(0,\ 0,\ 1)$.
Let $r$ be the radius of the sphere $P$ which is inscribed to all faces of the tetrahedron $OABC$.
When $t$ moves, find the maximum value of $\frac{\text{vol[P]}}{\text{vol[OABC]}}.$
2008 Harvard-MIT Mathematics Tournament, 12
Suppose we have an (infinite) cone $ \mathcal C$ with apex $ A$ and a plane $ \pi$. The intersection of $ \pi$ and $ \mathcal C$ is an ellipse $ \mathcal E$ with major axis $ BC$, such that $ B$ is closer to $ A$ than $ C$, and $ BC \equal{} 4$, $ AC \equal{} 5$, $ AB \equal{} 3$. Suppose we inscribe a sphere in each part of $ \mathcal C$ cut up by $ \mathcal E$ with both spheres tangent to $ \mathcal E$. What is the ratio of the radii of the spheres (smaller to larger)?
1969 IMO Longlists, 32
$(GDR 4)$ Find the maximal number of regions into which a sphere can be partitioned by $n$ circles.
Ukrainian TYM Qualifying - geometry, II.1
Inside a right cylinder with a radius of the base $R$ are placed $k$ ($k\ge 3$) of equal balls, each of which touches the side surface and the lower base of the cylinder and, in addition, exactly two other balls. After that, another equal ball is placed inside the cylinder so that it touches the upper base of the cylinder and all other balls. Find the volume $V (R, k)$ of the cylinder.
1966 IMO Longlists, 6
Let $m$ be a convex polygon in a plane, $l$ its perimeter and $S$ its area. Let $M\left( R\right) $ be the locus of all points in the space whose distance to $m$ is $\leq R,$ and $V\left(R\right) $ is the volume of the solid $M\left( R\right) .$
[i]a.)[/i] Prove that \[V (R) = \frac 43 \pi R^3 +\frac{\pi}{2} lR^2 +2SR.\]
Hereby, we say that the distance of a point $C$ to a figure $m$ is $\leq R$ if there exists a point $D$ of the figure $m$ such that the distance $CD$ is $\leq R.$ (This point $D$ may lie on the boundary of the figure $m$ and inside the figure.)
additional question:
[i]b.)[/i] Find the area of the planar $R$-neighborhood of a convex or non-convex polygon $m.$
[i]c.)[/i] Find the volume of the $R$-neighborhood of a convex polyhedron, e. g. of a cube or of a tetrahedron.
[b]Note by Darij:[/b] I guess that the ''$R$-neighborhood'' of a figure is defined as the locus of all points whose distance to the figure is $\leq R.$
2014 Contests, 3
A tetrahedron $ABCD$ with acute-angled faces is inscribed in a sphere with center $O$. A line passing through $O$ perpendicular to plane $ABC$ crosses the sphere at point $D'$ that lies on the opposide side of plane $ABC$ than point $D$. Line $DD'$ crosses plane $ABC$ in point $P$ that lies inside the triangle $ABC$. Prove, that if $\angle APB=2\angle ACB$, then $\angle ADD'=\angle BDD'$.
2002 Portugal MO, 2
Consider five spheres with radius $10$ cm . Four of these spheres are arranged on a horizontal table so that its centers form a $20$ cm square and the fifth sphere is placed on them so that it touches the other four. What is the distance between center of this fifth sphere and the table?
2014 Harvard-MIT Mathematics Tournament, 5
Let $\mathcal{C}$ be a circle in the $xy$ plane with radius $1$ and center $(0, 0, 0)$, and let $P$ be a point in space with coordinates $(3, 4, 8)$. Find the largest possible radius of a sphere that is contained entirely in the slanted cone with base $\mathcal{C}$ and vertex $P$.
2019 BMT Spring, Tie 4
Consider a regular triangular pyramid with base $\vartriangle ABC$ and apex $D$. If we have $AB = BC =AC = 6$ and $AD = BD = CD = 4$, calculate the surface area of the circumsphere of the pyramid.
2023 Olympic Revenge, 4
Let $S=\{(x,y,z)\in \mathbb{Z}^3\}$ the set of points with integer coordinates in the space. Gugu has infinitely many solid spheres. All with radii $\ge (\frac{\pi}2)^3$. Is it possible for Gugu to cover all points of $S$ with his spheres?
1994 Tuymaada Olympiad, 8
Prove that in space there is a sphere containing exactly $1994$ points with integer coordinates.
1966 AMC 12/AHSME, 19
Let $s_1$ be the sum of the first $n$ terms of the arithmetic sequence $8,12,\cdots$ and let $s_2$ be the sum of the first $n$ terms of the arithmetic sequence $17,19\cdots$. Assume $n\ne 0$. Then $s_1=s_2$ for:
$\text{(A)} \ \text{no value of n} \qquad \text{(B)} \ \text{one value of n} \qquad \text{(C)} \ \text{two values of n}$
$\text{(D)} \ \text{four values of n} \qquad \text{(E)} \ \text{more than four values of n}$
1982 Brazil National Olympiad, 6
Five spheres of radius $r$ are inside a right circular cone. Four of the spheres lie on the base of the cone. Each touches two of the others and the sloping sides of the cone. The fifth sphere touches each of the other four and also the sloping sides of the cone. Find the volume of the cone.
2014 AMC 12/AHSME, 17
A $4\times 4\times h$ rectangular box contains a sphere of radius $2$ and eight smaller spheres of radius $1$. The smaller spheres are each tangent to three sides of the box, and the larger sphere is tangent to each of the smaller spheres. What is $h$?
[asy]
import graph3;
import solids;
real h=2+2*sqrt(7);
currentprojection=orthographic((0.75,-5,h/2+1),target=(2,2,h/2));
currentlight=light(4,-4,4);
draw((0,0,0)--(4,0,0)--(4,4,0)--(0,4,0)--(0,0,0)^^(4,0,0)--(4,0,h)--(4,4,h)--(0,4,h)--(0,4,0));
draw(shift((1,3,1))*unitsphere,gray(0.85));
draw(shift((3,3,1))*unitsphere,gray(0.85));
draw(shift((3,1,1))*unitsphere,gray(0.85));
draw(shift((1,1,1))*unitsphere,gray(0.85));
draw(shift((2,2,h/2))*scale(2,2,2)*unitsphere,gray(0.85));
draw(shift((1,3,h-1))*unitsphere,gray(0.85));
draw(shift((3,3,h-1))*unitsphere,gray(0.85));
draw(shift((3,1,h-1))*unitsphere,gray(0.85));
draw(shift((1,1,h-1))*unitsphere,gray(0.85));
draw((0,0,0)--(0,0,h)--(4,0,h)^^(0,0,h)--(0,4,h));
[/asy]
$\textbf{(A) }2+2\sqrt 7\qquad
\textbf{(B) }3+2\sqrt 5\qquad
\textbf{(C) }4+2\sqrt 7\qquad
\textbf{(D) }4\sqrt 5\qquad
\textbf{(E) }4\sqrt 7\qquad$
2003 Iran MO (3rd Round), 12
There is a lamp in space.(Consider lamp a point)
Do there exist finite number of equal sphers in space that the light of the lamp can not go to the infinite?(If a ray crash in a sphere it stops)
2013 Chile National Olympiad, 5
A conical surface $C$ is cut by a plane $T$ as shown in the figure on the back of this sheet. Show that $C \cap T$ is an ellipse. You can use as an aid the fact that if you consider the two spheres tangent to $C$ and $T$ as shown in the figure, they intersect $T$ in the bulbs.
[asy]
// calculate intersection of line and plane
// p = point on line
// d = direction of line
// q = point in plane
// n = normal to plane
triple lineintersectplan(triple p, triple d, triple q, triple n)
{
return (p + dot(n,q - p)/dot(n,d)*d);
}
// projection of point A onto line BC
triple projectionofpointontoline(triple A, triple B, triple C)
{
return lineintersectplan(B, B - C, A, B - C);
}
// calculate area of space triangle with vertices A, B, and C
real trianglearea(triple A, triple B, triple C)
{
return abs(cross(A - C, B - C)/2);
}
// calculate incentre of space triangle ABC
triple triangleincentre(triple A, triple B, triple C)
{
return (abs(B - C) * A + abs(C - A) * B + abs(A - B) * C)/(abs(B - C) + abs(C - A) + abs(A - B));
}
// calculate inradius of space triangle ABC
real triangleinradius(triple A, triple B, triple C)
{
return 2*trianglearea(A,B,C)/(abs(B - C) + abs(C - A) + abs(A - B));
}
// calculate excentre of space triangle ABC
triple triangleexcentre(triple A, triple B, triple C)
{
return (-abs(B - C) * A + abs(C - A) * B + abs(A - B) * C)/(-abs(B - C) + abs(C - A) + abs(A - B));
}
// calculate exradius of space triangle ABC
real triangleexradius(triple A, triple B, triple C)
{
return 2*trianglearea(A,B,C)/(-abs(B - C) + abs(C - A) + abs(A - B));
}
unitsize(2 cm);
pair project (triple A, real t) {
return((A.x, A.y*Sin(t) + A.z*Cos(t)));
}
real alpha, beta, theta, t;
real coneradius = 1, coneheight = 3;
real a, b, c;
real[] m, r;
triple A, B, V;
triple ellipsecenter, ellipsex, ellipsey;
triple[] F, O, P, R, W;
path[] ellipse, spherering;
theta = 15;
V = (0,0,-coneheight);
m[1] = sqrt(Cos(theta)^2*coneheight^2 - Sin(theta)^2*coneradius^2)/coneradius;
m[2] = -m[1];
alpha = -aTan(Sin(theta)/m[1]);
beta = -aTan(Sin(theta)/m[2]) + 180;
A = (coneradius*Cos(alpha), coneradius*Sin(alpha), 0);
B = (coneradius*Cos(beta), coneradius*Sin(beta), 0);
W[1] = interp(V,(coneradius,0,0),0.6);
W[2] = interp(V,(-coneradius,0,0),0.4);
O[1] = triangleexcentre(V,W[1],W[2]);
O[2] = triangleincentre(V,W[1],W[2]);
r[1] = triangleexradius(V,W[1],W[2]);
r[2] = triangleinradius(V,W[1],W[2]);
F[1] = projectionofpointontoline(O[1],W[1],W[2]);
F[2] = projectionofpointontoline(O[2],W[1],W[2]);
P[1] = O[1] - (0,0,r[1]*coneradius/sqrt(coneradius^2 + coneheight^2));
P[2] = O[2] - (0,0,r[2]*coneradius/sqrt(coneradius^2 + coneheight^2));
spherering[11] = shift(project(P[1],theta))*yscale(Sin(theta))*arc((0,0),r[1]*coneheight/sqrt(coneradius^2 + coneheight^2),alpha,beta);
spherering[12] = shift(project(P[1],theta))*yscale(Sin(theta))*arc((0,0),r[1]*coneheight/sqrt(coneradius^2 + coneheight^2),beta,alpha + 360);
spherering[21] = shift(project(P[2],theta))*yscale(Sin(theta))*arc((0,0),r[2]*coneheight/sqrt(coneradius^2 + coneheight^2),alpha,beta);
spherering[22] = shift(project(P[2],theta))*yscale(Sin(theta))*arc((0,0),r[2]*coneheight/sqrt(coneradius^2 + coneheight^2),beta,alpha + 360);
ellipsecenter = (W[1] + W[2])/2;
a = abs(W[1] - ellipsecenter);
c = abs(F[1] - ellipsecenter);
b = sqrt(a^2 - c^2);
ellipsex = (W[1] - W[2])/abs(W[1] - W[2]);
ellipsey = (0,1,0);
ellipse[1] = project(ellipsecenter + a*ellipsex, theta);
for (t = 0; t <= 180; t = t + 5) {
ellipse[1] = ellipse[1]--project(ellipsecenter + a*Cos(t)*ellipsex + b*Sin(t)*ellipsey, theta);
}
ellipse[2] = project(ellipsecenter - a*ellipsex, theta);
for (t = 180; t <= 360; t = t + 5) {
ellipse[2] = ellipse[2]--project(ellipsecenter + a*Cos(t)*ellipsex + b*Sin(t)*ellipsey, theta);
}
R[1] = ellipsecenter + 1*ellipsex + ellipsey;
R[2] = ellipsecenter - 1.2*ellipsex + ellipsey;
R[3] = ellipsecenter - 1*ellipsex - ellipsey;
R[4] = ellipsecenter + 1.2*ellipsex - ellipsey;
fill(ellipse[1]--ellipse[2]--cycle, gray(0.9));
draw(yscale(Sin(theta))*Circle((0,0),coneradius));
draw(project(V,theta)--project(A,theta));
draw(project(V,theta)--project(B,theta));
draw(Circle(project(O[1],theta),r[1]));
draw(Circle(project(O[2],theta),r[2]));
draw(spherering[11], dashed);
draw(spherering[12]);
draw(spherering[21], dashed);
draw(spherering[22]);
draw(ellipse[1], dashed);
draw(ellipse[2]);
draw(project(R[1],theta)--interp(project(R[1],theta),project(R[2],theta),0.13));
draw(interp(project(R[1],theta),project(R[2],theta),0.13)--interp(project(R[1],theta),project(R[2],theta),0.76), dashed);
draw(interp(project(R[1],theta),project(R[2],theta),0.76)--project(R[2],theta));
draw(project(R[2],theta)--project(R[3],theta)--project(R[4],theta)--project(R[1],theta));
label("$C$", (-1,0.3));
label("$T$", (1.2,-0.8));
dot(project(F[1],theta));
dot(project(F[2],theta));
//dot("$F_1$", project(F[1],theta));
//dot("$F_2$", project(F[2],theta));
//dot("$O_1$", project(O[1],theta));
//dot("$O_2$", project(O[2],theta));
//dot("$P_1$", project(P[1],theta));
//dot("$V$", project(V,theta));
//dot("$W_1$", project(W[1],theta));
//dot("$W_2$", project(W[2],theta));
[/asy]
1989 IMO Longlists, 74
For points $ A_1, \ldots ,A_5$ on the sphere of radius 1, what is the maximum value that $ min_{1 \leq i,j \leq 5} A_iA_j$ can take? Determine all configurations for which this maximum is attained. (Or: determine the diameter of any set $ \{A_1, \ldots ,A_5\}$ for which this maximum is attained.)
2023 Math Prize for Girls Problems, 14
Five points are chosen uniformly and independently at random on the surface of a sphere. Next, 2 of these 5 points are randomly picked, with every pair equally likely. What is the probability that the 2 points are separated by the plane containing the other 3 points?
1986 Poland - Second Round, 3
Let S be a sphere cirucmscribed on a regular tetrahedron with an edge length greater than 1. The sphere $ S $ is represented as the sum of four sets. Prove that one of these sets includes points $ P $, $ Q $ such that the length of the segment $ PQ $ exceeds 1.
1987 Austrian-Polish Competition, 1
Three pairwise orthogonal chords of a sphere $S$ are drawn through a given point $P$ inside $S$. Prove that the sum of the squares of their lengths does not depend on their directions.
2021 Adygea Teachers' Geometry Olympiad, 4
Two identical balls of radius $\sqrt{15}$ and two identical balls of a smaller radius are located on a plane so that each ball touches the other three. Find the area of the surface $S$ of the ball with the smaller radius.
2013 Princeton University Math Competition, 5
Suppose you have a sphere tangent to the $xy$-plane with its center having positive $z$-coordinate. If it is projected from a point $P=(0,b,a)$ to the $xy$-plane, it gives the conic section $y=x^2$. If we write $a=\tfrac pq$ where $p,q$ are integers, find $p+q$.