This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 39

2013 Ukraine Team Selection Test, 2

The teacher reported to Peter an odd integer $m \le 2013$ and gave the guy a homework. Petrick should star the cells in the $2013 \times 2013$ table so to make the condition true: if there is an asterisk in some cell in the table, then or in row or column containing this cell should be no more than $m$ stars (including this one). Thus in each cell of the table the guy can put at most one star. The teacher promised Peter that his assessment would be just the number of stars that the guy will be able to place. What is the greatest number will the stars be able to place in the table Petrick?

2022 Latvia Baltic Way TST, P5

Let $n \ge 2$ be a positive integer. An $n\times n$ grid of squares has been colored as a chessboard. Let a [i]move[/i] consist of picking a square from the board and then changing the colors to the opposite for all squares that lie in the same row as the chosen square, as well as for all squares that lie in the same column (the chosen square itself is also changed to the opposite color). Find all values of $n$ for which it is possible to make all squares of the grid be the same color in a finite sequence of moves.

2009 Greece Junior Math Olympiad, 4

In the figure we see the paths connecting the square of a city (point $P$) with the school (point $S$). In the square there are $k$ pupils starting to go to the school. They have the ability to move only to the right and up. If the pupils are free to choose any allowed path (in order to get to school), determine the minimum value of $k$ so that in any case at least two pupils follow the same path. [img]https://cdn.artofproblemsolving.com/attachments/e/2/b5d6c6db5942cb706428cb63af3ca15590727f.png[/img]

2017 Vietnamese Southern Summer School contest, Problem 4

In a square board of size 1001 x 1001, we color some $m$ cells in such a way that: i. Of any two cells that share an edge, at least one is colored. ii. Of any 6 consecutive cells in a column or a row, at least 2 consecutive ones are colored. Determine the smallest possible value of $m$.

2019 Tournament Of Towns, 5

One needs to ffll the cells of an $n\times n$ table ($n > 1$) with distinct integers from $1$ to $n^2$ so that every two consecutive integers are placed in cells that share a side, while every two integers with the same remainder if divided by $n$ are placed in distinct rows and distinct columns. For which $n$ is this possible? (Alexandr Gribalko)

2013 Balkan MO Shortlist, C3

The square $ABCD$ is divided into $n^2$ equal small (elementary) squares by parallel lines to its sides, (see the figure for the case $n = 4$). A spider starts from point$ A$ and moving only to the right and up tries to arrive at point $C$. Every ” movement” of the spider consists of: ”$k$ steps to the right and $m$ steps up” or ”$m$ steps to the right and $k$ steps up” (which can be performed in any way). The spider first makes $l$ ”movements” and in then, moves to the right or up without any restriction. If $n = m \cdot l$, find all possible ways the spider can approach the point $C$, where $n, m, k, l$ are positive integers with $k < m$. [img]https://cdn.artofproblemsolving.com/attachments/2/d/4fb71086beb844ca7c492a30c7d333fa08d381.png[/img]

2010 Korea Junior Math Olympiad, 2

Let there be a $n\times n$ board. Write down $0$ or $1$ in all $n^2$ squares. For $1 \le k \le n$, let $A_k$ be the product of all numbers in the $k$th row. How many ways are there to write down the numbers so that $A_1 + A_2 + ... + A_n$ is even?

2020 Tournament Of Towns, 4

For which integers $N$ it is possible to write real numbers into the cells of a square of size $N \times N$ so that among the sums of each pair of adjacent cells there are all integers from $1$ to $2(N-1)N$ (each integer once)? Maxim Didin

2019 Singapore Senior Math Olympiad, 5

Determine all integer $n \ge 2$ such that it is possible to construct an $n * n$ array where each entry is either $-1, 0, 1$ so that the sums of elements in every row and every column are distinct

2019 Abels Math Contest (Norwegian MO) Final, 1

You have an $n \times n$ grid of empty squares. You place a cross in all the squares, one at a time. When you place a cross in an empty square, you receive $i+j$ points if there were $i$ crosses in the same row and $j$ crosses in the same column before you placed the new cross. Which are the possible total scores you can get?

2012 Sharygin Geometry Olympiad, 1

Determine all integer $n$ such that a surface of an $n \times n \times n$ grid cube can be pasted in one layer by paper $1 \times 2$ rectangles so that each rectangle has exactly five neighbors (by a line segment). (A.Shapovalov)

2012 Dutch Mathematical Olympiad, 2

We number the columns of an $n\times n$-board from $1$ to $n$. In each cell, we place a number. This is done in such a way that each row precisely contains the numbers $1$ to $n$ (in some order), and also each column contains the numbers $1$ to $n$ (in some order). Next, each cell that contains a number greater than the cell's column number, is coloured grey. In the figure below you can see an example for the case $n = 3$. [asy] unitsize(0.6 cm); int i; fill((0,0)--(1,0)--(1,1)--(0,1)--cycle, gray(0.8)); fill(shift((1,0))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), gray(0.8)); fill(shift((0,2))*((0,0)--(1,0)--(1,1)--(0,1)--cycle), gray(0.8)); for (i = 0; i <= 3; ++i) { draw((0,i)--(3,i)); draw((i,0)--(i,3)); } label("$1$", (0.5,3.5)); label("$2$", (1.5,3.5)); label("$3$", (2.5,3.5)); label("$3$", (0.5,2.5)); label("$1$", (1.5,2.5)); label("$2$", (2.5,2.5)); label("$1$", (0.5,1.5)); label("$2$", (1.5,1.5)); label("$3$", (2.5,1.5)); label("$2$", (0.5,0.5)); label("$3$", (1.5,0.5)); label("$1$", (2.5,0.5)); [/asy] (a) Suppose that $n = 5$. Can the numbers be placed in such a way that each row contains the same number of grey cells? (b) Suppose that $n = 10$. Can the numbers be placed in such a way that each row contains the same number of grey cells?

2022 Taiwan TST Round 2, 2

A $100 \times100$ chessboard has a non-negative real number in each of its cells. A chessboard is [b]balanced[/b] if and only if the numbers sum up to one for each column of cells as well as each row of cells. Find the largest positive real number $x$ so that, for any balanced chessboard, we can find $100$ cells of it so that these cells all have number greater or equal to $x$, and no two of these cells are on the same column or row. [i]Proposed by CSJL.[/i]

2023 Kyiv City MO Round 1, Problem 5

You are given a square $n \times n$. The centers of some of some $m$ of its $1\times 1$ cells are marked. It turned out that there is no convex quadrilateral with vertices at these marked points. For each positive integer $n \geq 3$, find the largest value of $m$ for which it is possible. [i]Proposed by Oleksiy Masalitin, Fedir Yudin[/i]

2015 Caucasus Mathematical Olympiad, 5

What is the smallest number of $3$-cell corners needed to be painted in a $6\times 6$ square so that it was impossible to paint more than one corner of it? (The painted corners should not overlap.)

2021 Bolivia Ibero TST, 1

Let $n$ be a posititve integer. On a $n \times n$ grid there are $n^2$ unit squares and on these we color the sides with blue such that every unit square has exactly one side with blue. [b]a)[/b] Find the maximun number of blue unit sides we can have on the $n \times n$ grid. [b]b)[/b] Find the minimun number of blue unit sides we can have on the $n \times n$ grid.

1993 Spain Mathematical Olympiad, 5

Given a 4×4 grid of points, the points at two opposite corners are denoted $A$ and $D$. We need to choose two other points $ B$ and $C$ such that the six pairwise distances of these four points are all distinct. (a) How many such quadruples of points are there? (b) How many such quadruples of points are non-congruent? (c) If each point is assigned a pair of coordinates $(x_i,y_i)$, prove that the sum of the expressions $|x_i-x_j |+|y_i-y_j|$ over all six pairs of points in a quadruple is constant.

2015 Canada National Olympiad, 3

On a $(4n + 2)\times (4n + 2)$ square grid, a turtle can move between squares sharing a side.The turtle begins in a corner square of the grid and enters each square exactly once, ending in the square where she started. In terms of $n$, what is the largest positive integer $k$ such that there must be a row or column that the turtle has entered at least $k$ distinct times?

2016 India IMO Training Camp, 3

Let $n$ be an odd natural number. We consider an $n\times n$ grid which is made up of $n^2$ unit squares and $2n(n+1)$ edges. We colour each of these edges either $\color{red} \textit{red}$ or $\color{blue}\textit{blue}$. If there are at most $n^2$ $\color{red} \textit{red}$ edges, then show that there exists a unit square at least three of whose edges are $\color{blue}\textit{blue}$.

2016 PAMO, 6

Consider an $n\times{n}$ grid formed by $n^2$ unit squares. We define the centre of a unit square as the intersection of its diagonals. Find the smallest integer $m$ such that, choosing any $m$ unit squares in the grid, we always get four unit squares among them whose centres are vertices of a parallelogram.

2016 Korea Winter Program Practice Test, 2

Given an integer $n\geq 3$. For each $3\times3$ squares on the grid, call this $3\times3$ square isolated if the center unit square is white and other 8 squares are black, or the center unit square is black and other 8 squares are white. Now suppose one can paint an infinite grid by white or black, so that one can select an $a\times b$ rectangle which contains at least $n^2-n$ isolated $3\times 3$ square. Find the minimum of $a+b$ that such thing can happen. (Note that $a,b$ are positive reals, and selected $a\times b$ rectangle may have sides not parallel to grid line of the infinite grid.)

2010 N.N. Mihăileanu Individual, 4

A square grid is composed of $ n^2\equiv 1\pmod 4 $ unit cells that contained each a locust that jumped the same amount of cells in the direccion of columns or lines, without leaving the grid. Prove that, as a result of this, at least two locusts landed on the same cell. [i]Marius Cavachi[/i]

2019 Greece JBMO TST, 4

Consider a $8\times 8$ chessboard where all $64$ unit squares are at the start white. Prove that, if any $12$ of the $64$ unit square get painted black, then we can find $4$ lines and $4$ rows that have all these $12$ unit squares.

2023 Pan-American Girls’ Mathematical Olympiad, 2

In each cell of an \(n \times n\) grid, one of the numbers \(0\), \(1,\) or \(2\) must be written. Determine all positive integers \(n\) for which there exists a way to fill the \(n \times n\) grid such that, when calculating the sum of the numbers in each row and each column, the numbers \(1, 2, \ldots, 2n\) are obtained in some order.

2019 Israel National Olympiad, 2

We are given a 5x5 square grid, divided to 1x1 tiles. Two tiles are called [b]linked[/b] if they lie in the same row or column, and the distance between their centers is 2 or 3. For example, in the picture the gray tiles are the ones linked to the red tile. [img]https://i.imgur.com/JVTQ9wB.png[/img] Sammy wants to mark as many tiles in the grid as possible, such that no two of them are linked. What is the maximal number of tiles he can mark?