This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 280

Novosibirsk Oral Geo Oly IX, 2019.5

Point $A$ is located in this circle of radius $1$. An arbitrary chord is drawn through it, and then a circle of radius $2$ is drawn through the ends of this chord. Prove that all such circles touch some fixed circle, not depending from the initial choice of the chord.

2009 Belarus Team Selection Test, 1

Two equal circles $S_1$ and $S_2$ meet at two different points. The line $\ell$ intersects $S_1$ at points $A,C$ and $S_2$ at points $B,D$ respectively (the order on $\ell$: $A,B,C,D$) . Define circles $\Gamma_1$ and $\Gamma_2$ as follows: both $\Gamma_1$ and $\Gamma_2$ touch $S_1$ internally and $S_2$ externally, both $\Gamma_1$ and $\Gamma_2$ line $\ell$, $\Gamma_1$ and $\Gamma_2$ lie in the different halfplanes relatively to line $\ell$. Suppose that $\Gamma_1$ and $\Gamma_2$ touch each other. Prove that $AB=CD$. I. Voronovich

III Soros Olympiad 1996 - 97 (Russia), 11.4

There are four circles. The chord$ AB$ is drawn in the first one, and the distance from the midpoint of the smaller of the two formed arcs to $AB$ is equal to $1$. The second, third and fourth circles are located inside the larger segment and touch the chord $AB$. The second and fourth circles touch internally the first and externally the third. The sum of the radii of the last three circles is equal to the radius of the first circle. Find the radius of the third circle if it is known that the line passing through the centers of the first and third circles is not parallel to the line passing through the centers of the other two circles.

2020 New Zealand MO, 4

Let $\Gamma_1$ and $\Gamma_2$ be circles internally tangent at point $A$, with $\Gamma_1$ inside $\Gamma_2$. Let $BC$ be a chord of $\Gamma_2$ which is tangent to $\Gamma_1$ at point $D$. Prove that line $AD$ is the angle bisector of $\angle BAC$.

the 3rd XMO, 2

$ABCD$ is inscribed in unit circle $\Gamma$. Let $\Omega_1$, $\Omega_2$ be the circumcircles of $\vartriangle ABD$, $\vartriangle CBD$ respectively. Circles $\Omega_1$, $\Omega_2$ are tangent to segment $BD$ at $M$,$N$ respectively. Line A$M$ intersects $\Gamma$, $\Omega_1$ again at points $X_1$,$X_2$ respectively (different from $A$, $M$). Let $\omega_1$ be the circle passing through $X_1$, $X_2$ and tangent to $\Omega_1$. Line $CN$ intersects $\Gamma$, $\Omega_2$ again at points $Y_1$, $Y_2$ respectively (different from $C$, $N$). Let $\omega_2$ be the circle passing through $Y_1$, $Y_2$ and tangent to $\Omega_2$. Circles $\Omega_1$,$\Omega_2$, $\omega_1$, $\omega_2$ have radii $R_1$, $R_2$, $r_1$, $r_2$ respectively. Prove that $$r_1+r_2-R_1-R_2=1.$$ [img]https://cdn.artofproblemsolving.com/attachments/1/5/70471f2419fadc4b2183f5fe74f0c7a2e69ed4.png[/img] [url=https://www.geogebra.org/m/vxx8ghww]geogebra file[/url]

2006 Sharygin Geometry Olympiad, 10.3

Given a circle and a point $P$ inside it, different from the center. We consider pairs of circles tangent to the given internally and to each other at point $P$. Find the locus of the points of intersection of the common external tangents to these circles.

2011 Sharygin Geometry Olympiad, 1

Altitudes $AA_1$ and $BB_1$ of triangle ABC meet in point $H$. Line $CH$ meets the semicircle with diameter $AB$, passing through $A_1, B_1$, in point $D$. Segments $AD$ and $BB_1$ meet in point $M$, segments $BD$ and $AA_1$ meet in point $N$. Prove that the circumcircles of triangles $B_1DM$ and $A_1DN$ touch.

2018 Brazil Team Selection Test, 3

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

2016 ELMO Problems, 6

Elmo is now learning olympiad geometry. In triangle $ABC$ with $AB\neq AC$, let its incircle be tangent to sides $BC$, $CA$, and $AB$ at $D$, $E$, and $F$, respectively. The internal angle bisector of $\angle BAC$ intersects lines $DE$ and $DF$ at $X$ and $Y$, respectively. Let $S$ and $T$ be distinct points on side $BC$ such that $\angle XSY=\angle XTY=90^\circ$. Finally, let $\gamma$ be the circumcircle of $\triangle AST$. (a) Help Elmo show that $\gamma$ is tangent to the circumcircle of $\triangle ABC$. (b) Help Elmo show that $\gamma$ is tangent to the incircle of $\triangle ABC$. [i]James Lin[/i]

2006 Singapore Senior Math Olympiad, 3

Two circles are tangent to each other internally at a point $T$. Let the chord $AB$ of the larger circle be tangent to the smaller circle at a point $P$. Prove that the line TP bisects $\angle ATB$.

2021 Puerto Rico Team Selection Test, 5

Circle $o$ contains the circles $m$ , $p$ and $r$, such that they are tangent to $o$ internally and any two of them are tangent between themselves. The radii of the circles $m$ and $p$ are equal to $x$ . The circle $r$ has radius $1$ and passes through the center of the circle $o$. Find the value of $x$ .

Estonia Open Junior - geometry, 2013.1.4

Inside a circle $c$ with the center $O$ there are two circles $c_1$ and $c_2$ which go through $O$ and are tangent to the circle $c$ at points $A$ and $B$ crespectively. Prove that the circles $c_1$ and $c_2$ have a common point which lies in the segment $AB$.

2015 IMO, 3

Let $ABC$ be an acute triangle with $AB > AC$. Let $\Gamma $ be its circumcircle, $H$ its orthocenter, and $F$ the foot of the altitude from $A$. Let $M$ be the midpoint of $BC$. Let $Q$ be the point on $\Gamma$ such that $\angle HQA = 90^{\circ}$ and let $K$ be the point on $\Gamma$ such that $\angle HKQ = 90^{\circ}$. Assume that the points $A$, $B$, $C$, $K$ and $Q$ are all different and lie on $\Gamma$ in this order. Prove that the circumcircles of triangles $KQH$ and $FKM$ are tangent to each other. Proposed by Ukraine

Geometry Mathley 2011-12, 4.3

Let $ABC$ be a triangle not being isosceles at $A$. Let $(O)$ and $(I)$ denote the circumcircle and incircle of the triangle. $(I)$ touches $AC$ and $AB$ at $E, F$ respectively. Points $M$ and $N$ are on the circle $(I)$ such that $EM \parallel FN \parallel BC$. Let $P,Q$ be the intersections of $BM,CN$ and $(I)$. Prove that i) $BC,EP, FQ$ are concurrent, and denote by $K$ the point of concurrency. ii) the circumcircles of triangle $BPK, CQK$ are all tangent to $(I)$ and all pass through a common point on the circle $(O)$. Nguyễn Minh Hà

Kyiv City MO Seniors Round2 2010+ geometry, 2011.11.4

Let three circles be externally tangent in pairs, with parallel diameters $A_1A_2, B_1B_2, C_1C_2$ (i.e. each of the quadrilaterals $A_1B_1B_2A_2$ and $A_1C_1C_2A_2$ is a parallelogram or trapezoid, which segment $A_1A_2$ is the base). Prove that $A_1B_2, B_1C_2, C_1A_2$ intersect at one point. (Yuri Biletsky )

India EGMO 2022 TST, 5

Let $I$ and $I_A$ denote the incentre and excentre opposite to $A$ of scalene $\triangle ABC$ respectively. Let $A'$ be the antipode of $A$ in $\odot (ABC)$ and $L$ be the midpoint of arc $(BAC)$. Let $LB$ and $LC$ intersect $AI$ at points $Y$ and $Z$ respectively. Prove that $\odot (LYZ)$ is tangent to $\odot (A'II_A)$. [i]~Mahavir Gandhi[/i]

Kyiv City MO Juniors 2003+ geometry, 2013.9.5

The two circles ${{w} _ {1}}, \, \, {{w} _ {2}}$ touch externally at the point $Q$. The common external tangent of these circles is tangent to ${{w} _ {1}}$ at the point $B$, $BA$ is the diameter of this circle. A tangent to the circle ${{w} _ {2}} $ is drawn through the point $A$, which touches this circle at the point $C$, such that the points $B$ and $C$ lie in one half-plane relative to the line $AQ$. Prove that the circle ${{w} _ {1}}$ bisects the segment $C $. (Igor Nagel)

1997 Slovenia Team Selection Test, 1

Circles $K_1$ and $K_2$ are externally tangent to each other at $A$ and are internally tangent to a circle $K$ at $A_1$ and $A_2$ respectively. The common tangent to $K_1$ and $K_2$ at $A$ meets $K$ at point $P$. Line $PA_1$ meets $K_1$ again at $B_1$ and $PA_2$ meets $K_2$ again at $B_2$. Show that $B_1B_2$ is a common tangent of $K_1$ and $K_2$.

2007 Silk Road, 2

Let $\omega$ be the incircle of triangle $ABC$ touches $BC$ at point $K$ . Draw a circle passing through points $B$ and $C$ , and touching $\omega$ at the point $S$ . Prove that $S K$ passes through the center of the exscribed circle of triangle $A B C$ , tangent to side $B C$ .

III Soros Olympiad 1996 - 97 (Russia), 11.7

On the plane there are two circles $a$ and $b$ and a line $\ell$ perpendicular to the line passing through the centers of these circles. It is known that there are $4$ unequal circles, each of which touches $a$, $b$ and $\ell$. Find the radius of the smallest of these four circles if the radii of the other three are $2$, $3$ and $6$. Also find the ratio of the radii of the circles $a$ and $b$.

Geometry Mathley 2011-12, 3.4

A triangle $ABC$ is inscribed in the circle $(O,R)$. A circle $(O',R')$ is internally tangent to $(O)$ at $I$ such that $R < R'$. $P$ is a point on the circle $(O)$. Rays $PA, PB, PC$ meet $(O')$ at $A_1,B_1,C_1$. Let $A_2B_2C_2$ be the triangle formed by the intersections of the line symmetric to $B_1C_1$ about $BC$, the line symmetric to $C_1A_1$ about $CA$ and the line symmetric to $A_1B_1$ about $AB$. Prove that the circumcircle of $A_2B_2C_2$ is tangent to $(O)$. Nguyễn Văn Linh

2021 Saudi Arabia Training Tests, 10

Let $AB$ be a chord of the circle $(O)$. Denote M as the midpoint of the minor arc $AB$. A circle $(O')$ tangent to segment $AB$ and internally tangent to $(O)$. A line passes through $M$, perpendicular to $O'A$, $O'B$ and cuts $AB$ respectively at $C, D$. Prove that $AB = 2CD$.

Novosibirsk Oral Geo Oly IX, 2020.1

Two semicircles touch the side of the rectangle, each other and the segment drawn in it as in the figure. What part of the whole rectangle is filled? [img]https://cdn.artofproblemsolving.com/attachments/3/e/70ca8b80240a282553294a58cb3ed807d016be.png[/img]

2003 France Team Selection Test, 1

Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.

2017 Peru Iberoamerican Team Selection Test, P1

Let $C_1$ and $C_2$ be tangent circles internally at point $A$, with $C_2$ inside of $C_1$. Let $BC$ be a chord of $C_1$ that is tangent to $C_2$. Prove that the ratio between the length $BC$ and the perimeter of the triangle $ABC$ is constant, that is, it does not depend of the selection of the chord $BC$ that is chosen to construct the trangle.