Found problems: 239
2006 Switzerland Team Selection Test, 1
In the triangle $A,B,C$, let $D$ be the middle of $BC$ and $E$ the projection of $C$ on $AD$. Suppose $\angle ACE = \angle ABC$. Show that the triangle $ABC$ is isosceles or rectangle.
2015 AMC 10, 19
The isosceles right triangle $ABC$ has right angle at $C$ and area $12.5$. The rays trisecting $\angle{ACB}$ intersect $AB$ at $D$ and $E$. What is the area of $\triangle{CDE}$?
$\textbf{(A) }\frac{5\sqrt{2}}{3}\qquad\textbf{(B) }\frac{50\sqrt{3}-75}{4}\qquad\textbf{(C) }\frac{15\sqrt{3}}{8}\qquad\textbf{(D) }\frac{50-25\sqrt{3}}{2}\qquad\textbf{(E) }\frac{25}{6}$
2000 National Olympiad First Round, 5
$[BD]$ is a median of $\triangle ABC$. $m(\widehat{ABD})=90^\circ$, $|AB|=2$, and $|AC|=6$. $|BC|=?$
$ \textbf{(A)}\ 3
\qquad\textbf{(B)}\ 3\sqrt2
\qquad\textbf{(C)}\ 5
\qquad\textbf{(D)}\ 4\sqrt2
\qquad\textbf{(E)}\ 2\sqrt6
$
2008 Junior Balkan Team Selection Tests - Romania, 4
Let $ ABC$ be a triangle, and $ D$ the midpoint of the side $ BC$. On the sides $ AB$ and $ AC$ we consider the points $ M$ and $ N$, respectively, both different from the midpoints of the sides, such that \[ AM^2\plus{}AN^2 \equal{}BM^2 \plus{} CN^2 \textrm{ and } \angle MDN \equal{} \angle BAC.\] Prove that $ \angle BAC \equal{} 90^\circ$.
2003 Bulgaria Team Selection Test, 5
Let $ABCD$ be a circumscribed quadrilateral and let $P$ be the orthogonal projection of its in center on $AC$.
Prove that $\angle {APB}=\angle {APD}$
2020 Jozsef Wildt International Math Competition, W15
Show that the number$$4\sin\frac{\pi}{34}\left(\sin\frac{3\pi}{34}+\sin\frac{7\pi}{34}+\sin\frac{11\pi}{34}+\sin\frac{15\pi}{34}\right)$$
is an integer and determine it.
2011 AIME Problems, 4
In triangle $ABC$, $AB=125,AC=117$, and $BC=120$. The angle bisector of angle $A$ intersects $\overline{BC}$ at point $L$, and the angle bisector of angle $B$ intersects $\overline{AC}$ at point $K$. Let $M$ and $N$ be the feet of the perpendiculars from $C$ to $\overline{BK}$ and $\overline{AL}$, respectively. Find $MN$.
2010 Contests, 3
$ABCD$ is a parallelogram in which angle $DAB$ is acute. Points $A, P, B, D$ lie on one circle in exactly this order. Lines $AP$ and $CD$ intersect in $Q$. Point $O$ is the circumcenter of the triangle $CPQ$. Prove that if $D \neq O$ then the lines $AD$ and $DO$ are perpendicular.
2011 NIMO Problems, 14
In circle $\theta_1$ with radius $1$, circles $\phi_1, \phi_2, \dots, \phi_8$, with equal radii, are drawn such that for $1 \le i \le 8$, $\phi_i$ is tangent to $\omega_1$, $\phi_{i-1}$, and $\phi_{i+1}$, where $\phi_0 = \phi_8$ and $\phi_1 = \phi_9$. There exists a circle $\omega_2$ such that $\omega_1 \neq \omega_2$ and $\omega_2$ is tangent to $\phi_i$ for $1 \le i \le 8$. The radius of $\omega_2$ can be expressed in the form $a - b\sqrt{c} -d\sqrt{e - \sqrt{f}} + g \sqrt{h - j \sqrt{k}}$ such that $a, b, \dots, k$ are positive integers and the numbers $e, f, k, \gcd(h, j)$ are squarefree. What is $a+b+c+d+e+f+g+h+j+k$.
[i]Proposed by Eugene Chen
[/i]
2006 Macedonia National Olympiad, 4
Let $M$ be a point on the smaller arc $A_1A_n$ of the circumcircle of a regular $n$-gon $A_1A_2\ldots A_n$ .
$(a)$ If $n$ is even, prove that $\sum_{i=1}^n(-1)^iMA_i^2=0$.
$(b)$ If $n$ is odd, prove that $\sum_{i=1}^n(-1)^iMA_i=0$.
2013 India IMO Training Camp, 2
In a triangle $ABC$ with $B = 90^\circ$, $D$ is a point on the segment $BC$ such that the inradii of triangles $ABD$ and $ADC$ are equal. If $\widehat{ADB} = \varphi$ then prove that $\tan^2 (\varphi/2) = \tan (C/2)$.
1998 AIME Problems, 10
Eight spheres of radius 100 are placed on a flat surface so that each sphere is tangent to two others and their centers are the vertices of a regular octagon. A ninth sphere is placed on the flat surface so that it is tangent to each of the other eight spheres. The radius of this last sphere is $a+b\sqrt{c},$ where $a, b,$ and $c$ are positive integers, and $c$ is not divisible by the square of any prime. Find $a+b+c.$
2015 IMC, 4
Determine whether or not there exist 15 integers $m_1,\ldots,m_{15}$
such that~
$$\displaystyle \sum_{k=1}^{15}\,m_k\cdot\arctan(k) = \arctan(16). \eqno(1)$$
(Proposed by Gerhard Woeginger, Eindhoven University of Technology)
2005 Junior Balkan Team Selection Tests - Moldova, 5
Let $ABC$ be an acute-angled triangle, and let $F$ be the foot of its altitude from the vertex $C$. Let $M$ be the midpoint of the segment $CA$. Assume that $CF=BM$. Then the angle $MBC$ is equal to angle $FCA$ if and only if the triangle $ABC$ is equilateral.
2013 USAJMO, 5
Quadrilateral $XABY$ is inscribed in the semicircle $\omega$ with diameter $XY$. Segments $AY$ and $BX$ meet at $P$. Point $Z$ is the foot of the perpendicular from $P$ to line $XY$. Point $C$ lies on $\omega$ such that line $XC$ is perpendicular to line $AZ$. Let $Q$ be the intersection of segments $AY$ and $XC$. Prove that \[\dfrac{BY}{XP}+\dfrac{CY}{XQ}=\dfrac{AY}{AX}.\]
2014 China Team Selection Test, 4
Given circle $O$ with radius $R$, the inscribed triangle $ABC$ is an acute scalene triangle, where $AB$ is the largest side. $AH_A, BH_B,CH_C$ are heights on $BC,CA,AB$. Let $D$ be the symmetric point of $H_A$ with respect to $H_BH_C$, $E$ be the symmetric point of $H_B$ with respect to $H_AH_C$. $P$ is the intersection of $AD,BE$, $H$ is the orthocentre of $\triangle ABC$. Prove: $OP\cdot OH$ is fixed, and find this value in terms of $R$.
(Edited)
2012 Online Math Open Problems, 16
Let $ABC$ be a triangle with $AB = 4024$, $AC = 4024$, and $BC=2012$. The reflection of line $AC$ over line $AB$ meets the circumcircle of $\triangle{ABC}$ at a point $D\ne A$. Find the length of segment $CD$.
[i]Ray Li.[/i]
2009 Harvard-MIT Mathematics Tournament, 10
Points $A$ and $B$ lie on circle $\omega$. Point $P$ lies on the extension of segment $AB$ past $B$. Line $\ell$ passes through $P$ and is tangent to $\omega$. The tangents to $\omega$ at points $A$ and $B$ intersect $\ell$ at points $D$ and $C$ respectively. Given that $AB=7$, $BC=2$, and $AD=3$, compute $BP$.
2004 USAMO, 1
Let $ABCD$ be a quadrilateral circumscribed about a circle, whose interior and exterior angles are at least 60 degrees. Prove that
\[
\frac{1}{3}|AB^3 - AD^3| \le |BC^3 - CD^3| \le 3|AB^3 - AD^3|.
\]
When does equality hold?
1989 AIME Problems, 10
Let $a$, $b$, $c$ be the three sides of a triangle, and let $\alpha$, $\beta$, $\gamma$, be the angles opposite them. If $a^2+b^2=1989c^2$, find \[ \frac{\cot \gamma}{\cot \alpha+\cot \beta}. \]
1992 AMC 12/AHSME, 27
A circle of radius $r$ has chords $\overline{AB}$ of length $10$ and $\overline{CD}$ of length $7$. When $\overline{AB}$ and $\overline{CD}$ are extended through $B$ and $C$, respectively, they intersect at $P$, which is outside the circle. If $\angle APD = 60^{\circ}$ and $BP = 8$, then $r^{2} =$
$ \textbf{(A)}\ 70\qquad\textbf{(B)}\ 71\qquad\textbf{(C)}\ 72\qquad\textbf{(D)}\ 73\qquad\textbf{(E)}\ 74 $
2013 NIMO Problems, 8
Let $ABCD$ be a convex quadrilateral with $\angle ABC = 120^{\circ}$ and $\angle BCD = 90^{\circ}$, and let $M$ and $N$ denote the midpoints of $\overline{BC}$ and $\overline{CD}$. Suppose there exists a point $P$ on the circumcircle of $\triangle CMN$ such that ray $MP$ bisects $\overline{AD}$ and ray $NP$ bisects $\overline{AB}$. If $AB + BC = 444$, $CD = 256$ and $BC = \frac mn$ for some relatively prime positive integers $m$ and $n$, compute $100m+n$.
[i]Proposed by Michael Ren[/i]
1996 AMC 12/AHSME, 19
The midpoints of the sides of a regular hexagon $ABCDEF$ are joined to form a smaller hexagon. What fraction of the area of $ABCDEF$ is enclosed by the smaller hexagon?
[asy]
size(130);
pair A, B, C, D, E, F, G, H, I, J, K, L;
A = dir(120);
B = dir(60);
C = dir(0);
D = dir(-60);
E = dir(-120);
F = dir(180);
draw(A--B--C--D--E--F--cycle);
dot(A); dot(B); dot(C); dot(D); dot(E); dot(F);
G = midpoint(A--B); H = midpoint(B--C); I = midpoint(C--D);
J = midpoint(D--E); K = midpoint(E--F); L = midpoint(F--A);
draw(G--H--I--J--K--L--cycle);
label("$A$", A, dir(120));
label("$B$", B, dir(60));
label("$C$", C, dir(0));
label("$D$", D, dir(-60));
label("$E$", E, dir(-120));
label("$F$", F, dir(180));
[/asy]
$\textbf{(A)}\ \displaystyle \frac{1}{2} \qquad \textbf{(B)}\ \displaystyle \frac{\sqrt 3}{3} \qquad \textbf{(C)}\ \displaystyle \frac{2}{3} \qquad \textbf{(D)}\ \displaystyle \frac{3}{4} \qquad \textbf{(E)}\ \displaystyle \frac{\sqrt 3}{2}$
2013 Canadian Mathematical Olympiad Qualification Repechage, 2
In triangle $ABC$, $\angle A = 90^\circ$ and $\angle C = 70^\circ$. $F$ is point on $AB$ such that $\angle ACF = 30^\circ$, and $E$ is a point on $CA$ such that $\angle CF E = 20^\circ$. Prove that $BE$ bisects $\angle B$.
2009 Stanford Mathematics Tournament, 3
Given a regular pentagon, find the ratio of its diagonal, $d$, to its side, $a$