This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 239

2005 District Olympiad, 3

Prove that if the circumcircles of the faces of a tetrahedron $ABCD$ have equal radii, then $AB=CD$, $AC=BD$ and $AD=BC$.

2014 Contests, 1

In a triangle $ABC$, let $D$ be the point on the segment $BC$ such that $AB+BD=AC+CD$. Suppose that the points $B$, $C$ and the centroids of triangles $ABD$ and $ACD$ lie on a circle. Prove that $AB=AC$.

2005 AIME Problems, 14

In triangle $ABC$, $AB=13$, $BC=15$, and $CA=14$. Point $D$ is on $\overline{BC}$ with $CD=6.$ Point $E$ is on $\overline{BC}$ such that $\angle BAE\cong \angle CAD.$ Given that $BE=\frac pq$ where $p$ and $q$ are relatively prime positive integers, find $q.$

1994 APMO, 4

Is there an infinite set of points in the plane such that no three points are collinear, and the distance between any two points is rational?

2004 USAMTS Problems, 5

Point $G$ is where the medians of the triangle $ABC$ intersect and point $D$ is the midpoint of side $BC$. The triangle $BDG$ is equilateral with side length 1. Determine the lengths, $AB$, $BC$, and $CA$, of the sides of triangle $ABC$. [asy] size(200); defaultpen(fontsize(10)); real r=100.8933946; pair A=sqrt(7)*dir(r), B=origin, C=(2,0), D=midpoint(B--C), E=midpoint(A--C), F=midpoint(A--B), G=centroid(A,B,C); draw(A--B--C--A--D^^B--E^^C--F); pair point=G; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$G$", G, dir(20)); label("1", B--G, dir(150)); label("1", D--G, dir(30)); label("1", B--D, dir(270));[/asy]

1964 AMC 12/AHSME, 29

In this figure $\angle RFS = \angle FDR$, $FD = 4$ inches, $DR = 6$ inches, $FR = 5$ inches, $FS = 7\dfrac{1}{2}$ inches. The length of $RS$, in inches, is: [asy] import olympiad; pair F,R,S,D; F=origin; R=5*dir(aCos(9/16)); S=(7.5,0); D=4*dir(aCos(9/16)+aCos(1/8)); label("$F$",F,SW);label("$R$",R,N); label("$S$",S,SE); label("$D$",D,W); label("$7\frac{1}{2}$",(F+S)/2.5,SE); label("$4$",midpoint(F--D),SW); label("$5$",midpoint(F--R),W); label("$6$",midpoint(D--R),N); draw(F--D--R--F--S--R); markscalefactor=0.1; draw(anglemark(S,F,R)); draw(anglemark(F,D,R)); //Credit to throwaway1489 for the diagram[/asy] $\textbf{(A)}\ \text{undetermined} \qquad \textbf{(B)}\ 4\qquad \textbf{(C)}\ 5\dfrac{1}{2} \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 6\dfrac{1}{4}$

1989 AMC 12/AHSME, 19

A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of lengths $3$, $4$, and $5$. What is the area of the triangle? $\textbf{(A)}\ 6 \qquad \textbf{(B)}\ \frac{18}{\pi^2} \qquad \textbf{(C)}\ \frac{9}{\pi^2}\left(\sqrt{3}-1\right) \qquad \textbf{(D)}\ \frac{9}{\pi^2}\left(\sqrt{3}+1\right) \qquad \textbf{(E)}\ \frac{9}{\pi^2}\left(\sqrt{3}+3\right)$

2010 Contests, 2

Let $ABC$ be a triangle with $AB = AC$. The incircle touches $BC$, $AC$ and $AB$ at $D$, $E$ and $F$ respectively. Let $P$ be a point on the arc $\overarc{EF}$ that does not contain $D$. Let $Q$ be the second point of intersection of $BP$ and the incircle of $ABC$. The lines $EP$ and $EQ$ meet the line $BC$ at $M$ and $N$, respectively. Prove that the four points $P, F, B, M$ lie on a circle and $\frac{EM}{EN} = \frac{BF}{BP}$.

2013 Online Math Open Problems, 40

Let $ABC$ be a triangle with $AB=13$, $BC=14$, and $AC=15$. Let $M$ be the midpoint of $BC$ and let $\Gamma$ be the circle passing through $A$ and tangent to line $BC$ at $M$. Let $\Gamma$ intersect lines $AB$ and $AC$ at points $D$ and $E$, respectively, and let $N$ be the midpoint of $DE$. Suppose line $MN$ intersects lines $AB$ and $AC$ at points $P$ and $O$, respectively. If the ratio $MN:NO:OP$ can be written in the form $a:b:c$ with $a,b,c$ positive integers satisfying $\gcd(a,b,c)=1$, find $a+b+c$. [i]James Tao[/i]

2003 Turkey Junior National Olympiad, 1

Let $ABCD$ be a cyclic quadrilateral, and $E$ be the intersection of its diagonals. If $m(\widehat{ADB}) = 22.5^\circ$, $|BD|=6$, and $|AD|\cdot|CE|=|DC|\cdot|AE|$, find the area of the quadrilateral $ABCD$.

2013 Math Prize For Girls Problems, 15

Let $\triangle ABC$ be a triangle with $AB = 7$, $BC = 8$, and $AC = 9$. Point $D$ is on side $\overline{AC}$ such that $\angle CBD$ has measure $45^\circ$. What is the length of $\overline{BD}$?

JBMO Geometry Collection, 2002

The triangle $ABC$ has $CA = CB$. $P$ is a point on the circumcircle between $A$ and $B$ (and on the opposite side of the line $AB$ to $C$). $D$ is the foot of the perpendicular from $C$ to $PB$. Show that $PA + PB = 2 \cdot PD$.

2006 Kyiv Mathematical Festival, 3

See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url] Let $O$ be the circumcenter and $H$ be the intersection point of the altitudes of acute triangle $ABC.$ The straight lines $BH$ and $CH$ intersect the segments $CO$ and $BO$ at points $D$ and $E$ respectively. Prove that if triangles $ODH$ and $OEH$ are isosceles then triangle $ABC$ is isosceles too.

1992 India Regional Mathematical Olympiad, 8

The cyclic octagon $ABCDEFGH$ has sides $a,a,a,a,b,b,b,b$ respectively. Find the radius of the circle that circumscribes $ABCDEFGH.$

2002 South africa National Olympiad, 1

Given a quadrilateral $ABCD$ such that $AB^2 + CD^2 = AD^2 + BC^2$, prove that $AC \perp BD$.

2014 PUMaC Geometry A, 7

Let $O$ be the center of a circle of radius $26$, and let $A$, $B$ be two distinct points on the circle, with $M$ being the midpoint of $AB$. Consider point $C$ for which $CO=34$ and $\angle COM=15^\circ$. Let $N$ be the midpoint of $CO$. Suppose that $\angle ACB=90^\circ$. Find $MN$.

2007 Purple Comet Problems, 23

Two circles with radius $2$ and radius $4$ have a common center at P. Points $A, B,$ and $C$ on the larger circle are the vertices of an equilateral triangle. Point $D$ is the intersection of the smaller circle and the line segment $PB$. Find the square of the area of triangle $ADC$.

1998 Polish MO Finals, 2

The points $D, E$ on the side $AB$ of the triangle $ABC$ are such that $\frac{AD}{DB}\frac{AE}{EB} = \left(\frac{AC}{CB}\right)^2$. Show that $\angle ACD = \angle BCE$.

1989 AIME Problems, 6

Two skaters, Allie and Billie, are at points $A$ and $B$, respectively, on a flat, frozen lake. The distance between $A$ and $B$ is $100$ meters. Allie leaves $A$ and skates at a speed of $8$ meters per second on a straight line that makes a $60^\circ$ angle with $AB$. At the same time Allie leaves $A$, Billie leaves $B$ at a speed of $7$ meters per second and follows the straight path that produces the earliest possible meeting of the two skaters, given their speeds. How many meters does Allie skate before meeting Billie? [asy] defaultpen(linewidth(0.8)); draw((100,0)--origin--60*dir(60), EndArrow(5)); label("$A$", origin, SW); label("$B$", (100,0), SE); label("$100$", (50,0), S); label("$60^\circ$", (15,0), N);[/asy]

2006 AMC 12/AHSME, 22

A circle of radius $ r$ is concentric with and outside a regular hexagon of side length 2. The probability that three entire sides of hexagon are visible from a randomly chosen point on the circle is 1/2. What is $ r$? $ \textbf{(A) } 2\sqrt {2} \plus{} 2\sqrt {3} \qquad \textbf{(B) } 3\sqrt {3} \plus{} \sqrt {2} \qquad \textbf{(C) } 2\sqrt {6} \plus{} \sqrt {3} \qquad \textbf{(D) } 3\sqrt {2} \plus{} \sqrt {6}\\ \textbf{(E) } 6\sqrt {2} \minus{} \sqrt {3}$

1999 USAMTS Problems, 4

In $\triangle PQR$, $PQ=8$, $QR=13$, and $RP=15$. Prove that there is a point $S$ on line segment $\overline{PR}$, but not at its endpoints, such that $PS$ and $QS$ are also integers. [asy] size(200); defaultpen(linewidth(0.8)); pair P=origin,Q=(8,0),R=(7,10),S=(3/2,15/7); draw(P--Q--R--cycle); label("$P$",P,W); label("$Q$",Q,E); label("$R$",R,NE); draw(Q--S,linetype("4 4")); label("$S$",S,NW); [/asy]

2013 Sharygin Geometry Olympiad, 4

Given a square cardboard of area $\frac{1}{4}$, and a paper triangle of area $\frac{1}{2}$ such that the square of its sidelength is a positive integer. Prove that the triangle can be folded in some ways such that the squace can be placed inside the folded figure so that both of its faces are completely covered with paper. [i]Proposed by N.Beluhov, Bulgaria[/i]

2011 AMC 10, 18

Rectangle $ABCD$ has $AB=6$ and $BC=3$. Point $M$ is chosen on side $AB$ so that $\angle AMD = \angle CMD$. What is the degree measure of $\angle AMD$? $ \textbf{(A)}\ 15 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 45 \qquad \textbf{(D)}\ 60 \qquad \textbf{(E)}\ 75 $

2014 NIMO Problems, 7

Let $\triangle ABC$ have $AB=6$, $BC=7$, and $CA=8$, and denote by $\omega$ its circumcircle. Let $N$ be a point on $\omega$ such that $AN$ is a diameter of $\omega$. Furthermore, let the tangent to $\omega$ at $A$ intersect $BC$ at $T$, and let the second intersection point of $NT$ with $\omega$ be $X$. The length of $\overline{AX}$ can be written in the form $\tfrac m{\sqrt n}$ for positive integers $m$ and $n$, where $n$ is not divisible by the square of any prime. Find $100m+n$. [i]Proposed by David Altizio[/i]

2013 Purple Comet Problems, 23

The diagram below shows the regular hexagon $BCEGHJ$ surrounded by the rectangle $ADFI$. Let $\theta$ be the measure of the acute angle between the side $\overline{EG}$ of the hexagon and the diagonal of the rectangle $\overline{AF}$. There are relatively prime positive integers $m$ and $n$ so that $\sin^2\theta  = \tfrac{m}{n}$. Find $m + n$. [asy] import graph; size(3.2cm); real labelscalefactor = 0.5; pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); draw((-1,3)--(-1,2)--(-0.13,1.5)--(0.73,2)--(0.73,3)--(-0.13,3.5)--cycle); draw((-1,3)--(-1,2)); draw((-1,2)--(-0.13,1.5)); draw((-0.13,1.5)--(0.73,2)); draw((0.73,2)--(0.73,3)); draw((0.73,3)--(-0.13,3.5)); draw((-0.13,3.5)--(-1,3)); draw((-1,3.5)--(0.73,3.5)); draw((0.73,3.5)--(0.73,1.5)); draw((-1,1.5)--(0.73,1.5)); draw((-1,3.5)--(-1,1.5)); label("$ A $",(-1.4,3.9),SE*labelscalefactor); label("$ B $",(-1.4,3.28),SE*labelscalefactor); label("$ C $",(-1.4,2.29),SE*labelscalefactor); label("$ D $",(-1.4,1.45),SE*labelscalefactor); label("$ E $",(-0.3,1.4),SE*labelscalefactor); label("$ F $",(0.8,1.45),SE*labelscalefactor); label("$ G $",(0.8,2.24),SE*labelscalefactor); label("$ H $",(0.8,3.26),SE*labelscalefactor); label("$ I $",(0.8,3.9),SE*labelscalefactor); label("$ J $",(-0.25,3.9),SE*labelscalefactor); [/asy]