This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 36

1975 IMO Shortlist, 12

Consider on the first quadrant of the trigonometric circle the arcs $AM_1 = x_1,AM_2 = x_2,AM_3 = x_3, \ldots , AM_v = x_v$ , such that $x_1 < x_2 < x_3 < \cdots < x_v$. Prove that \[\sum_{i=0}^{v-1} \sin 2x_i - \sum_{i=0}^{v-1} \sin (x_i- x_{i+1}) < \frac{\pi}{2} + \sum_{i=0}^{v-1} \sin (x_i + x_{i+1})\]

1967 IMO Longlists, 49

Let $n$ and $k$ be positive integers such that $1 \leq n \leq N+1$, $1 \leq k \leq N+1$. Show that: \[ \min_{n \neq k} |\sin n - \sin k| < \frac{2}{N}. \]

1977 IMO Shortlist, 7

Let $a,b,A,B$ be given reals. We consider the function defined by \[ f(x) = 1 - a \cdot \cos(x) - b \cdot \sin(x) - A \cdot \cos(2x) - B \cdot \sin(2x). \] Prove that if for any real number $x$ we have $f(x) \geq 0$ then $a^2 + b^2 \leq 2$ and $A^2 + B^2 \leq 1.$

2012 IFYM, Sozopol, 3

Prove the following inequality: $tan \, 1>\frac{3}{2}$.

2010 Korea Junior Math Olympiad, 5

If reals $x, y, z $ satises $tan x + tan y + tan z = 2$ and $0 < x, y,z < \frac{\pi}{2}.$ Prove that $$sin^2 x + sin^2 y + sin^2 z < 1.$$

1967 IMO Shortlist, 1

The parallelogram $ABCD$ has $AB=a,AD=1,$ $\angle BAD=A$, and the triangle $ABD$ has all angles acute. Prove that circles radius $1$ and center $A,B,C,D$ cover the parallelogram if and only \[a\le\cos A+\sqrt3\sin A.\]

1970 Vietnam National Olympiad, 1

Prove that for an arbitrary triangle $ABC$ : $sin \frac{A}{2} sin \frac{B}{2} sin \frac{C}{2} < \frac{1}{4}$.

1967 IMO Shortlist, 2

Let $n$ and $k$ be positive integers such that $1 \leq n \leq N+1$, $1 \leq k \leq N+1$. Show that: \[ \min_{n \neq k} |\sin n - \sin k| < \frac{2}{N}. \]

2002 USA Team Selection Test, 1

Let $ ABC$ be a triangle, and $ A$, $ B$, $ C$ its angles. Prove that \[ \sin\frac{3A}{2}+\sin\frac{3B}{2}+\sin\frac{3C}{2}\leq \cos\frac{A-B}{2}+\cos\frac{B-C}{2}+\cos\frac{C-A}{2}. \]

1967 IMO Shortlist, 3

Prove the trigonometric inequality $\cos x < 1 - \frac{x^2}{2} + \frac{x^4}{16},$ when $x \in \left(0, \frac{\pi}{2} \right).$

2015 Moldova Team Selection Test, 1

Let $c\in \Big(0,\dfrac{\pi}{2}\Big) , a = \Big(\dfrac{1}{sin(c)}\Big)^{\dfrac{1}{cos^2 (c)}}, b = \Big(\dfrac{1}{cos(c)}\Big)^{\dfrac{1}{sin^2 (c)}}$. \\Prove that at least one of $a,b$ is bigger than $\sqrt[11]{2015}$.

1967 IMO Longlists, 8

The parallelogram $ABCD$ has $AB=a,AD=1,$ $\angle BAD=A$, and the triangle $ABD$ has all angles acute. Prove that circles radius $1$ and center $A,B,C,D$ cover the parallelogram if and only \[a\le\cos A+\sqrt3\sin A.\]

2008 IMAC Arhimede, 3

Let $ 0 \leq x \leq 2\pi$. Prove the inequality $ \sqrt {\frac {\sin^{2}x}{1 + \cos^{2}x}} + \sqrt {\frac {\cos^{2}x}{1 + \sin^{2}x}}\geq 1 $

1967 IMO Longlists, 3

Prove the trigonometric inequality $\cos x < 1 - \frac{x^2}{2} + \frac{x^4}{16},$ when $x \in \left(0, \frac{\pi}{2} \right).$

1977 IMO, 1

Let $a,b,A,B$ be given reals. We consider the function defined by \[ f(x) = 1 - a \cdot \cos(x) - b \cdot \sin(x) - A \cdot \cos(2x) - B \cdot \sin(2x). \] Prove that if for any real number $x$ we have $f(x) \geq 0$ then $a^2 + b^2 \leq 2$ and $A^2 + B^2 \leq 1.$

2010 Victor Vâlcovici, 2

$ \sum_{cyc}\frac{1}{\left(\text{tg} y+\text{tg} z\right) \text{cos}^2 x} \ge 3, $ for any $ x,y,z\in (0,\pi/2) $ [i]Carmen[/i] and [i]Viorel Botea[/i]

2007 Peru MO (ONEM), 1

Find all values of $A$ such that $0^o < A < 360^o$ and also $\frac{\sin A}{\cos A - 1} \ge 1$ and $\frac{3\cos A - 1}{\sin A} \ge 1.$

1967 IMO Shortlist, 3

Find all $x$ for which, for all $n,$ \[\sum^n_{k=1} \sin {k x} \leq \frac{\sqrt{3}}{2}.\]

2008 Mathcenter Contest, 3

Let $ABC$ be a triangle whose side lengths are opposite the angle $A,B,C$ are $a,b,c$ respectively. Prove that $$\frac{ab\sin{2C}+bc\sin{ 2A}+ca\sin{2B}}{ab+bc+ca}\leq\frac{\sqrt{3}}{2}$$. [i](nooonuii)[/i]

2010 Laurențiu Panaitopol, Tulcea, 4

Let be a natural number $ n, $ and $ n $ real numbers $ a_1,a_2,\ldots ,a_n . $ Then, $$ \sum_{1\le i<j\le n} \cos\left( a_i-a_j \right)\ge -n/2. $$

1977 IMO Longlists, 20

Let $a,b,A,B$ be given reals. We consider the function defined by \[ f(x) = 1 - a \cdot \cos(x) - b \cdot \sin(x) - A \cdot \cos(2x) - B \cdot \sin(2x). \] Prove that if for any real number $x$ we have $f(x) \geq 0$ then $a^2 + b^2 \leq 2$ and $A^2 + B^2 \leq 1.$

Indonesia Regional MO OSP SMA - geometry, 2012.4

Given an acute triangle $ABC$. Point $H$ denotes the foot of the altitude drawn from $A$. Prove that $$AB + AC \ge BC cos \angle BAC + 2AH sin \angle BAC$$

1987 IMO Longlists, 68

Let $\alpha,\beta,\gamma$ be positive real numbers such that $\alpha+\beta+\gamma < \pi$, $\alpha+\beta > \gamma$,$ \beta+\gamma > \alpha$, $\gamma + \alpha > \beta.$ Prove that with the segments of lengths $\sin \alpha, \sin \beta, \sin \gamma $ we can construct a triangle and that its area is not greater than \[A=\dfrac 18\left( \sin 2\alpha+\sin 2\beta+ \sin 2\gamma \right).\] [i]Proposed by Soviet Union[/i]

1992 IMO Longlists, 37

Let the circles $C_1, C_2$, and $C_3$ be orthogonal to the circle $C$ and intersect each other inside $C$ forming acute angles of measures $A, B$, and $C$. Show that $A + B +C < \pi.$

1994 Tuymaada Olympiad, 5

Find the smallest natural number $n$ for which $sin \Big(\frac{1}{n+1934}\Big)<\frac{1}{1994}$ .