This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2004 Turkey MO (2nd round), 5

The excircle of a triangle $ABC$ corresponding to $A$ touches the lines $BC,CA,AB$ at $A_1,B_1,C_1$, respectively. The excircle corresponding to $B$ touches $BC,CA,AB$ at $A_2,B_2,C_2$, and the excircle corresponding to $C$ touches $BC,CA,AB$ at $A_3,B_3,C_3$, respectively. Find the maximum possible value of the ratio of the sum of the perimeters of $\triangle A_1B_1C_1$, $\triangle A_2B_2C_2$ and $\triangle A_3B_3C_3$ to the circumradius of $\triangle ABC$.

2010 Today's Calculation Of Integral, 625

Find $\lim_{t\rightarrow 0}\frac{1}{t^3}\int_0^{t^2} e^{-x}\sin \frac{x}{t}\ dx\ (t\neq 0).$ [i]2010 Kumamoto University entrance exam/Medicine[/i]

1993 Flanders Math Olympiad, 4

Define the sequence $oa_n$ as follows: $oa_0=1, oa_n= oa_{n-1} \cdot cos\left( \dfrac{\pi}{2^{n+1}} \right)$. Find $\lim\limits_{n\rightarrow+\infty} oa_n$.

1980 IMO, 14

Let $A$ be a fixed point in the interior of a circle $\omega$ with center $O$ and radius $r$, where $0<OA<r$. Draw two perpendicular chords $BC,DE$ such that they pass through $A$. For which position of these cords does $BC+DE$ maximize?

1991 Flanders Math Olympiad, 3

Given $\Delta ABC$ equilateral, with $X\in[A,B]$. Then we define unique points Y,Z so that $Y\in[B,C]$, $Z\in[A,C]$, $\Delta XYZ$ equilateral. If $Area\left(\Delta ABC\right) = 2 \cdot Area\left(\Delta XYZ\right)$, find the ratio of $\frac{AX}{XB},\frac{BY}{YC},\frac{CZ}{ZA}$.

2024 Nigerian MO Round 3, Problem 3

Let $ABC$ be a triangle, and let $O$ be its circumcenter. Let $\overline{CO}\cap AB\equiv D$. Let $\angle BAC=\alpha$, and $\angle CBA=\beta$. Prove that $$\dfrac{OD}{OC}=\Bigg|\dfrac{\cos(\alpha+\beta)}{\cos(\alpha-\beta)}\Bigg|$$\\ For clarification, $\overline{CO}$ represents the line $CO$, and $AC$ represents the segment $AC$. Cases in which $D$ doesn't exist should be ignored.

2010 Today's Calculation Of Integral, 599

Evaluate $\int_0^{\frac{\pi}{6}} \frac{e^x(\sin x+\cos x+\cos 3x)}{\cos^ 2 {2x}}\ dx$. created by kunny

1985 IMO Shortlist, 21

The tangents at $B$ and $C$ to the circumcircle of the acute-angled triangle $ABC$ meet at $X$. Let $M$ be the midpoint of $BC$. Prove that [i](a)[/i] $\angle BAM = \angle CAX$, and [i](b)[/i] $\frac{AM}{AX} = \cos\angle BAC.$

2005 Harvard-MIT Mathematics Tournament, 9

Compute \[ \displaystyle\sum_{k=0}^{\infty} \dfrac {4}{(4k)!}. \]

2015 India National Olympiad, 1

Let $ABC$ be a right-angled triangle with $\angle{B}=90^{\circ}$. Let $BD$ is the altitude from $B$ on $AC$. Let $P,Q$ and $I $be the incenters of triangles $ABD,CBD$ and $ABC$ respectively.Show that circumcenter of triangle $PIQ$ lie on the hypotenuse $AC$.

2009 China Team Selection Test, 2

In acute triangle $ ABC,$ points $ P,Q$ lie on its sidelines $ AB,AC,$ respectively. The circumcircle of triangle $ ABC$ intersects of triangle $ APQ$ at $ X$ (different from $ A$). Let $ Y$ be the reflection of $ X$ in line $ PQ.$ Given $ PX>PB.$ Prove that $ S_{\bigtriangleup XPQ}>S_{\bigtriangleup YBC}.$ Where $ S_{\bigtriangleup XYZ}$ denotes the area of triangle $ XYZ.$

1985 IMO Longlists, 12

Find the maximum value of \[\sin^2 \theta_1+\sin^2 \theta_2+\cdots+\sin^2 \theta_n\] subject to the restrictions $0 \leq \theta_i , \theta_1+\theta_2+\cdots+\theta_n=\pi.$

III Soros Olympiad 1996 - 97 (Russia), 11.8

Solve the system of equations: $$ 2(3-2\cos y)^2+2(4-2\sin y)^2=2(3-x)^2+32=(x-2\cos y)^2+4\sin^2y$$

2013 Sharygin Geometry Olympiad, 13

Let $A_1$ and $C_1$ be the tangency points of the incircle of triangle $ABC$ with $BC$ and $AB$ respectively, $A'$ and $C'$ be the tangency points of the excircle inscribed into the angle $B$ with the extensions of $BC$ and $AB$ respectively. Prove that the orthocenter $H$ of triangle $ABC$ lies on $A_1C_1$ if and only if the lines $A'C_1$ and $BA$ are orthogonal.

2001 China Western Mathematical Olympiad, 3

Find, with proof, all real numbers $ x \in \lbrack 0, \frac {\pi}{2} \rbrack$, such that $ (2 \minus{} \sin 2x)\sin (x \plus{} \frac {\pi}{4}) \equal{} 1$.

V Soros Olympiad 1998 - 99 (Russia), 10.3

It is known that $\sin 3x = 3 \sin x - 4 \sin^3x$. It is also easy to prove that $\sin nx$ for odd $n$ can be represented as a polynomial of degree $n$ of $\sin x$. Let $\sin 1999x = P(\sin x)$, where $P(t)$ is a polynomial of the $1999$th degree of $t$. Solve the equation $$P \left(\cos \frac{x}{1999}\right) = \frac12 .$$

2004 AMC 12/AHSME, 16

A function $ f$ is defined by $ f(z) \equal{} i\bar z$, where $ i \equal{}\sqrt{\minus{}\!1}$ and $ \bar z$ is the complex conjugate of $ z$. How many values of $ z$ satisfy both $ |z| \equal{} 5$ and $ f (z) \equal{} z$? $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 8$

2010 Today's Calculation Of Integral, 570

Let $ f(x) \equal{} 1 \minus{} \cos x \minus{} x\sin x$. (1) Show that $ f(x) \equal{} 0$ has a unique solution in $ 0 < x < \pi$. (2) Let $ J \equal{} \int_0^{\pi} |f(x)|dx$. Denote by $ \alpha$ the solution in (1), express $ J$ in terms of $ \sin \alpha$. (3) Compare the size of $ J$ defined in (2) with $ \sqrt {2}$.

2010 Today's Calculation Of Integral, 666

Let $f(x)$ be a function defined in $0<x<\frac{\pi}{2}$ satisfying: (i) $f\left(\frac{\pi}{6}\right)=0$ (ii) $f'(x)\tan x=\int_{\frac{\pi}{6}}^x \frac{2\cos t}{\sin t}dt$. Find $f(x)$. [i]1987 Sapporo Medical University entrance exam[/i]

2014 ELMO Shortlist, 9

Let $P$ be a point inside a triangle $ABC$ such that $\angle PAC= \angle PCB$. Let the projections of $P$ onto $BC$, $CA$, and $AB$ be $X,Y,Z$ respectively. Let $O$ be the circumcenter of $\triangle XYZ$, $H$ be the foot of the altitude from $B$ to $AC$, $N$ be the midpoint of $AC$, and $T$ be the point such that $TYPO$ is a parallelogram. Show that $\triangle THN$ is similar to $\triangle PBC$. [i]Proposed by Sammy Luo[/i]

Today's calculation of integrals, 893

Find the minimum value of $f(x)=\int_0^{\frac{\pi}{4}} |\tan t-x|dt.$

2012 Belarus Team Selection Test, 3

Let $ABC$ be an acute triangle. Let $\omega$ be a circle whose centre $L$ lies on the side $BC$. Suppose that $\omega$ is tangent to $AB$ at $B'$ and $AC$ at $C'$. Suppose also that the circumcentre $O$ of triangle $ABC$ lies on the shorter arc $B'C'$ of $\omega$. Prove that the circumcircle of $ABC$ and $\omega$ meet at two points. [i]Proposed by Härmel Nestra, Estonia[/i]

2001 Estonia National Olympiad, 1

Solve the system of equations $$\begin{cases} \sin x = y \\ \sin y = x \end{cases}$$

1986 AMC 12/AHSME, 27

In the adjoining figure, $AB$ is a diameter of the circle, $CD$ is a chord parallel to $AB$, and $AC$ intersects $BD$ at $E$, with $\angle AED = \alpha$. The ratio of the area of $\triangle CDE$ to that of $\triangle ABE$ is [asy] size(200); defaultpen(fontsize(10pt)+linewidth(.8pt)); pair A=(-1,0), B=(1,0), E=(0,-.4), C=(.6,-.8), D=(-.6,-.8), E=(0,-.8/(1.6)); draw(unitcircle); draw(A--B--D--C--A); draw(Arc(E,.2,155,205)); label("$A$",A,W); label("$B$",B,C); label("$C$",C,C); label("$D$",D,W); label("$\alpha$",E-(.2,0),W); label("$E$",E,N);[/asy] $ \textbf{(A)}\ \cos\ \alpha\qquad\textbf{(B)}\ \sin\ \alpha\qquad\textbf{(C)}\ \cos^2\alpha\qquad\textbf{(D)}\ \sin^2\alpha\qquad\textbf{(E)}\ 1 - \sin\ \alpha $