This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2014 Harvard-MIT Mathematics Tournament, 6

In quadrilateral $ABCD$, we have $AB = 5$, $BC = 6$, $CD = 5$, $DA = 4$, and $\angle ABC = 90^\circ$. Let $AC$ and $BD$ meet at $E$. Compute $\dfrac{BE}{ED}$.

1996 Putnam, 4

For any square matrix $\mathcal{A}$ we define $\sin {\mathcal{A}}$ by the usual power series. \[ \sin {\mathcal{A}}=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}\mathcal{A}^{2n+1} \] Prove or disprove : $\exists 2\times 2$ matrix $A\in \mathcal{M}_2(\mathbb{R})$ such that \[ \sin{A}=\left(\begin{array}{cc}1 & 1996 \\0 & 1 \end{array}\right) \]

1960 Czech and Slovak Olympiad III A, 1

Determine all real $x$ satisfying $$\frac{1}{\sin^2 x} -\frac{1}{\cos^2x} \ge \frac83.$$

1991 AIME Problems, 9

Tags: trigonometry
Suppose that $\sec x+\tan x=\frac{22}7$ and that $\csc x+\cot x=\frac mn,$ where $\frac mn$ is in lowest terms. Find $m+n.$

2001 China Team Selection Test, 2

Let $\theta_i \in \left ( 0,\frac{\pi}{4} \right ]$ for $i=1,2,3,4$. Prove that: $\tan \theta _1 \tan \theta _2 \tan \theta _3 \tan \theta _4 \le (\frac{\sin^8 \theta _1+\sin^8 \theta _2+\sin^8 \theta _3+\sin^8 \theta _4}{\cos^8 \theta _1+\cos^8 \theta _2+\cos^8 \theta _3+\cos^8 \theta _4})^\frac{1}{2}$ [hide=edit]@below, fixed now. There were some problems (weird characters) so aops couldn't send it.[/hide]

2007 AMC 10, 21

Right $ \triangle ABC$ has $ AB \equal{} 3$, $ BC \equal{} 4$, and $ AC \equal{} 5$. Square $ XYZW$ is inscribed in $ \triangle ABC$ with $ X$ and $ Y$ on $ \overline{AC}$, $ W$ on $ \overline{AB}$, and $ Z$ on $ \overline{BC}$. What is the side length of the square? [asy]size(200);defaultpen(fontsize(10pt)+linewidth(.8pt)); real s = (60/37); pair A = (0,0); pair C = (5,0); pair B = dir(60)*3; pair W = waypoint(B--A,(1/3)); pair X = foot(W,A,C); pair Y = (X.x + s, X.y); pair Z = (W.x + s, W.y); label("$A$",A,SW); label("$B$",B,NW); label("$C$",C,SE); label("$W$",W,NW); label("$X$",X,S); label("$Y$",Y,S); label("$Z$",Z,NE); draw(A--B--C--cycle); draw(X--W--Z--Y);[/asy] $ \textbf{(A)}\ \frac {3}{2}\qquad \textbf{(B)}\ \frac {60}{37}\qquad \textbf{(C)}\ \frac {12}{7}\qquad \textbf{(D)}\ \frac {23}{13}\qquad \textbf{(E)}\ 2$

2021 Tuymaada Olympiad, 5

Sines of three acute angles form an arithmetic progression, while the cosines of these angles form a geometric progression. Prove that all three angles are equal.

1985 IMO Longlists, 44

For which integers $n \geq 3$ does there exist a regular $n$-gon in the plane such that all its vertices have integer coordinates in a rectangular coordinate system?

1995 India National Olympiad, 4

Let $ABC$ be a triangle and a circle $\Gamma'$ be drawn lying outside the triangle, touching its incircle $\Gamma$ externally, and also the two sides $AB$ and $AC$. Show that the ratio of the radii of the circles $\Gamma'$ and $\Gamma$ is equal to $\tan^ 2 { \left( \dfrac{ \pi - A }{4} \right) }.$

VI Soros Olympiad 1999 - 2000 (Russia), 10.2

Solve the equation $$\frac{\pi-2}{2} + \frac{2}{1+\sin (2\sqrt{x})}+arccos(x^3-8x-1)=tg^2\sqrt{x}- \sqrt{x^4+x^3-5x^2-8x-24}$$

2008 Canada National Olympiad, 3

Let $ a$, $ b$, $ c$ be positive real numbers for which $ a \plus{} b \plus{} c \equal{} 1$. Prove that \[ {{a\minus{}bc}\over{a\plus{}bc}} \plus{} {{b\minus{}ca}\over{b\plus{}ca}} \plus{} {{c\minus{}ab}\over{c\plus{}ab}} \leq {3 \over 2}.\]

2012 Today's Calculation Of Integral, 856

On the coordinate plane, find the area of the part enclosed by the curve $C: (a+x)y^2=(a-x)x^2\ (x\geq 0)$ for $a>0$.

1983 AIME Problems, 4

A machine-shop cutting tool has the shape of a notched circle, as shown. The radius of the circle is $\sqrt{50}$ cm, the length of $AB$ is 6 cm, and that of $BC$ is 2 cm. The angle $ABC$ is a right angle. Find the square of the distance (in centimeters) from $B$ to the center of the circle. [asy] size(150); defaultpen(linewidth(0.65)+fontsize(11)); real r=10; pair O=(0,0),A=r*dir(45),B=(A.x,A.y-r),C; path P=circle(O,r); C=intersectionpoint(B--(B.x+r,B.y),P); draw(Arc(O, r, 45, 360-17.0312)); draw(A--B--C);dot(A); dot(B); dot(C); label("$A$",A,NE); label("$B$",B,SW); label("$C$",C,SE); [/asy]

2008 Vietnam National Olympiad, 2

Given a triangle with acute angle $ \angle BEC,$ let $ E$ be the midpoint of $ AB.$ Point $ M$ is chosen on the opposite ray of $ EC$ such that $ \angle BME \equal{} \angle ECA.$ Denote by $ \theta$ the measure of angle $ \angle BEC.$ Evaluate $ \frac{MC}{AB}$ in terms of $ \theta.$

2011 ELMO Problems, 3

Determine whether there exist two reals $x,y$ and a sequence $\{a_n\}_{n=0}^{\infty}$ of nonzero reals such that $a_{n+2}=xa_{n+1}+ya_n$ for all $n\ge0$ and for every positive real number $r$, there exist positive integers $i,j$ such that $|a_i|<r<|a_j|$. [i]Alex Zhu.[/i]

1996 China National Olympiad, 2

Let $n$ be a natural number. Suppose that $x_0=0$ and that $x_i>0$ for all $i\in\{1,2,\ldots ,n\}$. If $\sum_{i=1}^nx_i=1$ , prove that \[1\leq\sum_{i=1}^{n} \frac{x_i}{\sqrt{1+x_0+x_1+\ldots +x_{i-1}}\sqrt{x_i+\ldots+x_n}} < \frac{\pi}{2} \]

2005 Romania National Olympiad, 1

Let $ABCD$ be a parallelogram. The interior angle bisector of $\angle ADC$ intersects the line $BC$ in $E$, and the perpendicular bisector of the side $AD$ intersects the line $DE$ in $M$. Let $F= AM \cap BC$. Prove that: a) $DE=AF$; b) $AD\cdot AB = DE\cdot DM$. [i]Daniela and Marius Lobaza, Timisoara[/i]

2007 Today's Calculation Of Integral, 212

For integers $k\ (0\leq k\leq 5)$, positive numbers $m,\ n$ and real numbers $a,\ b$, let $f(k)=\int_{-\pi}^{\pi}(\sin kx-a\sin mx-b\sin nx)^{2}\ dx$, $p(k)=\frac{5!}{k!(5-k)!}\left(\frac{1}{2}\right)^{5}, \ E=\sum_{k=0}^{5}p(k)f(k)$. Find the values of $m,\ n,\ a,\ b$ for which $E$ is minimized.

2011 Math Prize For Girls Problems, 10

There are real numbers $a$ and $b$ such that for every positive number $x$, we have the identity \[ \tan^{-1} \bigl( \frac{1}{x} - \frac{x}{8} \bigr) + \tan^{-1}(ax) + \tan^{-1}(bx) = \frac{\pi}{2} \, . \] (Throughout this equation, $\tan^{-1}$ means the inverse tangent function, sometimes written $\arctan$.) What is the value of $a^2 + b^2$?

1963 AMC 12/AHSME, 34

In triangle ABC, side $a = \sqrt{3}$, side $b = \sqrt{3}$, and side $c > 3$. Let $x$ be the largest number such that the magnitude, in degrees, of the angle opposite side $c$ exceeds $x$. Then $x$ equals: $\textbf{(A)}\ 150 \qquad \textbf{(B)}\ 120\qquad \textbf{(C)}\ 105 \qquad \textbf{(D)}\ 90 \qquad \textbf{(E)}\ 60$

2014 Moldova Team Selection Test, 3

Let $\triangle ABC$ be a triangle with $\angle A$-acute. Let $P$ be a point inside $\triangle ABC$ such that $\angle BAP = \angle ACP$ and $\angle CAP =\angle ABP$. Let $M, N$ be the centers of the incircle of $\triangle ABP$ and $\triangle ACP$, and $R$ the radius of the circumscribed circle of $\triangle AMN$. Prove that $\displaystyle \frac{1}{R}=\frac{1}{AB}+\frac{1}{AC}+\frac{1}{AP}. $

2005 All-Russian Olympiad Regional Round, 11.6

11.6 Construct for each vertex of the quadrilateral of area $S$ a symmetric point wrt to the diagonal, which doesn't contain this vertex. Let $S'$ be an area of the obtained quadrilateral. Prove that $\frac{S'}{S}<3$. ([i]L. Emel'yanov[/i])

1971 Canada National Olympiad, 3

$ABCD$ is a quadrilateral with $AD=BC$. If $\angle ADC$ is greater than $\angle BCD$, prove that $AC>BD$.

2010 USA Team Selection Test, 3

Let $h_a, h_b, h_c$ be the lengths of the altitudes of a triangle $ABC$ from $A, B, C$ respectively. Let $P$ be any point inside the triangle. Show that \[\frac{PA}{h_b+h_c} + \frac{PB}{h_a+h_c} + \frac{PC}{h_a+h_b} \ge 1.\]

2008 Moldova National Olympiad, 9.4

Let $ n$ be a positive integer. Find all $ x_1,x_2,\ldots,x_n$ that satisfy the relation: \[ \sqrt{x_1\minus{}1}\plus{}2\cdot \sqrt{x_2\minus{}4}\plus{}3\cdot \sqrt{x_3\minus{}9}\plus{}\cdots\plus{}n\cdot\sqrt{x_n\minus{}n^2}\equal{}\frac{1}{2}(x_1\plus{}x_2\plus{}x_3\plus{}\cdots\plus{}x_n).\]