Found problems: 3349
1974 AMC 12/AHSME, 22
The minimum of $ \sin \frac{A}{2} \minus{} \sqrt3 \cos \frac{A}{2}$ is attained when $ A$ is
$ \textbf{(A)}\ \minus{}180^{\circ} \qquad
\textbf{(B)}\ 60^{\circ} \qquad
\textbf{(C)}\ 120^{\circ} \qquad
\textbf{(D)}\ 0^{\circ} \qquad
\textbf{(E)}\ \text{none of these}$
2016 Purple Comet Problems, 25
For $n$ measured in degrees, let $T(n) = \cos^2(30^\circ -n) - \cos(30^\circ -n)\cos(30^\circ +n) +\cos^2(30^\circ +n)$. Evaluate $$ 4\sum^{30}_{n=1} n \cdot T(n).$$
2012-2013 SDML (High School), 11
Suppose that $\cos\left(3x\right)+3\cos\left(x\right)=-2$. What is the value of $\cos\left(2x\right)$?
$\text{(A) }-\frac{1}{2}\qquad\text{(B) }-\frac{1}{\sqrt[3]{2}}\qquad\text{(C) }\frac{1}{\sqrt[3]{2}}\qquad\text{(D) }\sqrt[3]{2}-1\qquad\text{(E) }\frac{1}{2}$
2013 Macedonia National Olympiad, 5
An arbitrary triangle ABC is given. There are 2 lines, p and q, that are not parallel to each other and they are not perpendicular to the sides of the triangle. The perpendicular lines through points A, B and C to line p we denote with $ p_a, p_b, p_c $ and the perpendicular lines to line q we denote with $ q_a, q_b, q_c $. Let the intersection points of the lines $ p_a, q_a, p_b, q_b, p_c $ and $ q_c $ with $ q_b, p_b, q_c, p_c, q_a $ and $ p_a $ are $ K, L, P, Q, N $ and $ M $. Prove that $ KL, MN $ and $ PQ $ intersect in one point.
2005 Today's Calculation Of Integral, 64
Let $f(t)$ be the cubic polynomial for $t$ such that $\cos 3x=f(\cos x)$ holds for all real number $x$.
Evaluate
\[\int_0^1 \{f(t)\}^2 \sqrt{1-t^2}dt\]
2010 Contests, 3
Let $h_a, h_b, h_c$ be the lengths of the altitudes of a triangle $ABC$ from $A, B, C$ respectively. Let $P$ be any point inside the triangle. Show that
\[\frac{PA}{h_b+h_c} + \frac{PB}{h_a+h_c} + \frac{PC}{h_a+h_b} \ge 1.\]
Estonia Open Junior - geometry, 1996.2.4
A pentagon (not necessarily convex) has all sides of length $1$ and its product of cosine of any four angles equal to zero. Find all possible values of the area of such a pentagon.
2016 Nigerian Senior MO Round 2, Problem 2
$PQ$ is a diameter of a circle. $PR$ and $QS$ are chords with intersection at $T$. If $\angle PTQ= \theta$, determine the ratio of the area of $\triangle QTP$ to the area of $\triangle SRT$ (i.e. area of $\triangle QTP$/area of $\triangle SRT$) in terms of trigonometric functions of $\theta$
2008 iTest Tournament of Champions, 1
Let \[X = \cos\frac{2\pi}7 + \cos\frac{4\pi}7 + \cos\frac{6\pi}7 + \cdots + \cos\frac{2006\pi}7 + \cos\frac{2008\pi}7.\] Compute $\Big|\lfloor 2008 X\rfloor\Big|$.
2012 Harvard-MIT Mathematics Tournament, 9
How many real triples $(a,b,c)$ are there such that the polynomial $p(x)=x^4+ax^3+bx^2+ax+c$ has exactly three distinct roots, which are equal to $\tan y$, $\tan 2y$, and $\tan 3y$ for some real number $y$?
2007 Hungary-Israel Binational, 3
Let $ AB$ be the diameter of a given circle with radius $ 1$ unit, and let $ P$ be a given point on $ AB$. A line through $ P$ meets the circle at points $ C$ and $ D$, so a convex quadrilateral $ ABCD$ is formed. Find the maximum possible area of the quadrilateral.
2014 Contests, 1
Let $k$ be the circle and $A$ and $B$ points on circle which are not diametrically opposite. On minor arc $AB$ lies point arbitrary point $C$. Let $D$, $E$ and $F$ be foots of perpendiculars from $C$ on chord $AB$ and tangents of circle $k$ in points $A$ and $B$. Prove that $CD= \sqrt {CE \cdot CF}$
2004 Unirea, 3
Hello,
I've been trying to solve this for a while now, but no success! I mean, I have an expression for this but not a closed one. I derived something in terms of Tchebychev Polynomials : cos(nx) = P_n(cos(x)). Any help is appreciated.
Compute the following primitive:
\[ \int \frac{x\sin\left(2004 x\right)}{\tan x}\ dx\]
2018 Moldova EGMO TST, 6
Let $ x,y\in\mathbb{R}$ , and $ x,y \in $ $ \left(0,\frac{\pi}{2}\right) $, and $ m \in \left(2,+\infty\right) $ such that $ \tan x * \tan y = m $ . Find the minimum value of the expression $ E(x,y) = \cos x + \cos y $.
1996 South africa National Olympiad, 3
The sides of triangle $ABC$ has integer lengths. Given that $AC=6$ and $\angle BAC=120^\circ$, determine the lengths of the other two sides.
1980 AMC 12/AHSME, 18
If $b>1$, $\sin x>0$, $\cos x>0$, and $\log_b \sin x = a$, then $\log_b \cos x$ equals
$\text{(A)} \ 2\log_b(1-b^{a/2}) ~~\text{(B)} \ \sqrt{1-a^2} ~~\text{(C)} \ b^{a^2} ~~\text{(D)} \ \frac 12 \log_b(1-b^{2a}) ~~\text{(E)} \ \text{none of these}$
2010 AMC 12/AHSME, 13
In $ \triangle ABC, \ \cos(2A \minus{} B) \plus{} \sin(A\plus{}B) \equal{} 2$ and $ AB\equal{}4.$ What is $ BC?$
$ \textbf{(A)}\ \sqrt{2} \qquad \textbf{(B)}\ \sqrt{3} \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 2\sqrt{2} \qquad \textbf{(E)}\ 2\sqrt{3}$
2012 Flanders Math Olympiad, 3
(a) Show that for any angle $\theta$ and for any natural number $m$:
$$| \sin m\theta| \le m| \sin \theta|$$
(b) Show that for all angles $\theta_1$ and $\theta_2$ and for all even natural numbers $m$:
$$| \sin m \theta_2 - \sin m \theta_1| \le m| \sin (\theta_2 - \theta_1)|$$
(c) Show that for every odd natural number $m$ there are two angles, resp. $\theta_1$ and $\theta_2$, exist for which the inequality in (b) is not valid.
2003 India National Olympiad, 1
Let $P$ be an interior point of an acute-angled triangle $ABC$. The line $BP$ meets the line $AC$ at $E$, and the line $CP$ meets the line $AB$ at $F$. The lines $AP$ and $EF$ intersect each other at $D$. Let $K$ be the foot of the perpendicular from the point $D$ to the line $BC$. Show that the line $KD$ bisects the angle $\angle EKF$.
1998 Harvard-MIT Mathematics Tournament, 4
Find the range of $ f(A)=\frac{\sin A(3\cos^{2}A+\cos^{4}A+3\sin^{2}A+\sin^{2}A\cos^{2}A)}{\tan A (\sec A-\sin A\tan A)} $ if $A\neq \dfrac{n\pi}{2}$.
2013 India IMO Training Camp, 2
Let $ABCD$ by a cyclic quadrilateral with circumcenter $O$. Let $P$ be the point of intersection of the diagonals $AC$ and $BD$, and $K, L, M, N$ the circumcenters of triangles $AOP, BOP$, $COP, DOP$, respectively. Prove that $KL = MN$.
2013 AMC 12/AHSME, 20
For $135^\circ < x < 180^\circ$, points $P=(\cos x, \cos^2 x), Q=(\cot x, \cot^2 x), R=(\sin x, \sin^2 x)$ and $S =(\tan x, \tan^2 x)$ are the vertices of a trapezoid. What is $\sin(2x)$?
$ \textbf{(A)}\ 2-2\sqrt{2}\qquad\textbf{(B)}\ 3\sqrt{3}-6\qquad\textbf{(C)}\ 3\sqrt{2}-5\qquad\textbf{(D)}\ -\frac{3}{4}\qquad\textbf{(E)}\ 1-\sqrt{3} $
2013 Moldova Team Selection Test, 2
We call a triangle $\triangle ABC$, $Q$-angled if $\tan\angle A,\tan\angle B,\tan\angle C \in \mathbb{Q}$, where $\angle A,\angle B ,\angle C$ are the interior angles of the triangle $\triangle ABC$.
$a)$ Prove that $Q$-angled triangles exist;
$b)$ Let triangle $\triangle ABC$ be $Q$-angled. Prove that for any non-negative integer $n$, numbers of the form
$E_n=\sin^n\angle A \sin^n\angle B \sin^n\angle C + \cos^n\angle A\cos^n\angle B\cos^n\angle C$ are rational.
2010 Today's Calculation Of Integral, 657
A sequence $a_n$ is defined by $\int_{a_n}^{a_{n+1}} (1+|\sin x|)dx=(n+1)^2\ (n=1,\ 2,\ \cdots),\ a_1=0$.
Find $\lim_{n\to\infty} \frac{a_n}{n^3}$.
1992 AMC 12/AHSME, 24
Let $ABCD$ be a parallelogram of area $10$ with $AB = 3$ and $BC = 5$. Locate $E$, $F$ and $G$ on segments $\overline{AB}$, $\overline{BC}$ and $\overline{AD}$, respectively, with $AE = BF = AG = 2$. Let the line through $G$ parallel to $\overline{EF}$ intersect $\overline{CD}$ at $H$. The area of the quadrilateral $EFHG$ is
$ \textbf{(A)}\ 4\qquad\textbf{(B)}\ 4.5\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 5.5\qquad\textbf{(E)}\ 6 $