Found problems: 3349
2011 Kazakhstan National Olympiad, 1
Inscribed in a triangle $ABC$ with the center of the circle $I$ touch the sides $AB$ and $AC$ at points $C_{1}$ and $B_{1}$, respectively. The point $M$ divides the segment $C_{1}B_{1}$ in a 3:1 ratio, measured from $C_{1}$. $N$ - the midpoint of $AC$. Prove that the points $I, M, B_{1}, N$ lie on a circle, if you know that $AC = 3 (BC-AB)$.
1997 AIME Problems, 11
Let $x=\frac{\displaystyle\sum_{n=1}^{44} \cos n^\circ}{\displaystyle \sum_{n=1}^{44} \sin n^\circ}.$ What is the greatest integer that does not exceed $100x$?
2005 Today's Calculation Of Integral, 83
Evaluate
\[\sum_{n=1}^{\infty} \int_{2n\pi}^{2(n+1)\pi} \frac{x\sin x+\cos x}{x^2}\ dx\ (n=1,2,\cdots)\]
1977 IMO Longlists, 58
Prove that for every triangle the following inequality holds:
\[\frac{ab+bc+ca}{4S} \geq \cot \frac{\pi}{6}.\]
where $a, b, c$ are lengths of the sides and $S$ is the area of the triangle.
1999 Harvard-MIT Mathematics Tournament, 4
Evaluate $\displaystyle\sum_{n=0}^\infty \dfrac{\cos n\theta}{2^n}$, where $\cos\theta = \dfrac{1}{5}$.
1968 German National Olympiad, 5
Prove that for all real numbers $x$ of the interval $0 < x <\pi$ the inequality
$$\sin x +\frac12 \sin 2x +\frac13 \sin 3x > 0$$
holds.
2007 Today's Calculation Of Integral, 248
Evaluate $ \int_{\frac {\pi}{4}}^{\frac {3}{4}\pi } \cos \frac {1}{\sin \left(\frac {1}{\sin x}\right)}\cdot \cos \left(\frac {1}{\sin x}\right)\cdot \frac {\cos x}{\sin ^ 2 x\cdot \sin ^ 2 \left(\frac {1}{\sin x }\right)}\ dx$
Last Edited, Sorry
kunny
1985 AMC 12/AHSME, 23
If \[x \equal{} \frac { \minus{} 1 \plus{} i\sqrt3}{2}\qquad\text{and}\qquad y \equal{} \frac { \minus{} 1 \minus{} i\sqrt3}{2},\] where $ i^2 \equal{} \minus{} 1$, then which of the following is [i]not[/i] correct?
$ \textbf{(A)}\ x^5 \plus{} y^5 \equal{} \minus{} 1 \qquad \textbf{(B)}\ x^7 \plus{} y^7 \equal{} \minus{} 1 \qquad \textbf{(C)}\ x^9 \plus{} y^9 \equal{} \minus{} 1$
$ \textbf{(D)}\ x^{11} \plus{} y^{11} \equal{} \minus{} 1 \qquad \textbf{(E)}\ x^{13} \plus{} y^{13} \equal{} \minus{} 1$
2010 China Team Selection Test, 2
Let $ABCD$ be a convex quadrilateral. Assume line $AB$ and $CD$ intersect at $E$, and $B$ lies between $A$ and $E$. Assume line $AD$ and $BC$ intersect at $F$, and $D$ lies between $A$ and $F$. Assume the circumcircles of $\triangle BEC$ and $\triangle CFD$ intersect at $C$ and $P$. Prove that $\angle BAP=\angle CAD$ if and only if $BD\parallel EF$.
1979 AMC 12/AHSME, 30
[asy]
/*Using regular asymptote, this diagram would take 30 min to make. Using cse5, this takes 5 minutes. Conclusion? CSE5 IS THE BEST PACKAGE EVER CREATED!!!!*/
size(100);
import cse5;
pathpen=black;
anglefontpen=black;
pointpen=black;
anglepen=black;
dotfactor=3;
pair A=(0,0),B=(0.5,0.5*sqrt(3)),C=(3,0),D=(1.7,0),EE;
EE=(B+C)/2;
D(MP("$A$",A,W)--MP("$B$",B,N)--MP("$C$",C,E)--cycle);
D(MP("$E$",EE,N)--MP("$D$",D,S));
D(D);D(EE);
MA("80^\circ",8,D,EE,C,0.1);
MA("20^\circ",8,EE,C,D,0.3,2,shift(1,3)*C);
draw(arc(shift(-0.1,0.05)*C,0.25,100,180),arrow =ArcArrow());
MA("100^\circ",8,A,B,C,0.1,0);
MA("60^\circ",8,C,A,B,0.1,0);
//Credit to TheMaskedMagician for the diagram
[/asy]
In $\triangle ABC$, $E$ is the midpoint of side $BC$ and $D$ is on side $AC$. If the length of $AC$ is $1$ and $\measuredangle BAC = 60^\circ$, $\measuredangle ABC = 100^\circ$, $\measuredangle ACB = 20^\circ$ and $\measuredangle DEC = 80^\circ$, then the area of $\triangle ABC$ plus twice the area of $\triangle CDE$ equals
$\textbf{(A) }\frac{1}{4}\cos 10^\circ\qquad\textbf{(B) }\frac{\sqrt{3}}{8}\qquad\textbf{(C) }\frac{1}{4}\cos 40^\circ\qquad\textbf{(D) }\frac{1}{4}\cos 50^\circ\qquad\textbf{(E) }\frac{1}{8}$
1985 Greece National Olympiad, 1
Find all arcs $\theta$ such that $\frac{1}{\sin ^2 \theta}, \frac{1}{\cos ^2 \theta} $ are integer numbers and roots of equation $$x^2-ax+a=0.$$
2005 All-Russian Olympiad Regional Round, 10.1
The cosines of the angles of one triangle are respectively equal to the sines of the angles of the other triangle. Find the largest of these six angles of triangles.
2013 NIMO Problems, 4
Find the positive integer $N$ for which there exist reals $\alpha, \beta, \gamma, \theta$ which obey
\begin{align*}
0.1 &= \sin \gamma \cos \theta \sin \alpha, \\
0.2 &= \sin \gamma \sin \theta \cos \alpha, \\
0.3 &= \cos \gamma \cos \theta \sin \beta, \\
0.4 &= \cos \gamma \sin \theta \cos \beta, \\
0.5 &\ge \left\lvert N-100 \cos2\theta \right\rvert.
\end{align*}[i]Proposed by Evan Chen[/i]
2008 Romania National Olympiad, 4
Let $ ABCD$ be a rectangle with center $ O$, $ AB\neq BC$. The perpendicular from $ O$ to $ BD$ cuts the lines $ AB$ and $ BC$ in $ E$ and $ F$ respectively. Let $ M,N$ be the midpoints of the segments $ CD,AD$ respectively. Prove that $ FM \perp EN$.
Kyiv City MO 1984-93 - geometry, 1990.9.4
Let $\alpha, \beta, \gamma$ be the angles of some triangle. Prove that there is a triangle whose sides are equal to $\sin \alpha$, $\sin \beta$, $\sin \gamma$.
2005 Today's Calculation Of Integral, 72
Let $f(x)$ be a continuous function satisfying $f(x)=1+k\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(t)\sin (x-t)dt\ (k:constant\ number)$
Find the value of $k$ for which $\int_0^{\pi} f(x)dx$ is maximized.
2013 Waseda University Entrance Examination, 4
Given a solid $R$ contained in a semi cylinder with the hight $1$ which has a semicircle with radius $1$ as the base. The cross section at the hight $x\ (0\leq x\leq 1)$ is the form combined with two right-angled triangles as attached figure as below. Answer the following questions.
(1) Find the cross-sectional area $S(x)$ at the hight $x$.
(2) Find the volume of $R$. If necessary, when you integrate, set $x=\sin t.$
2005 iTest, 19
Find the amplitude of $y = 4 \sin (x) + 3 \cos (x)$.
1959 Poland - Second Round, 3
Prove that if $ 0 \leq \alpha < \frac{\pi}{2} $ and $ 0 \leq \beta < \frac{\pi}{2} $, then
$$ tg \frac{\alpha + \beta}{2} \leq \frac{tg \alpha + tg \beta}{2}.$$
2020 India National Olympiad, 2
Suppose $P(x)$ is a polynomial with real coefficients, satisfying the condition $P(\cos \theta+\sin \theta)=P(\cos \theta-\sin \theta)$, for every real $\theta$. Prove that $P(x)$ can be expressed in the form$$P(x)=a_0+a_1(1-x^2)^2+a_2(1-x^2)^4+\dots+a_n(1-x^2)^{2n}$$for some real numbers $a_0, a_1, \dots, a_n$ and non-negative integer $n$.
[i]Proposed by C.R. Pranesacher[/i]
1990 IMO Longlists, 82
In a triangle, a symmedian is a line through a vertex that is symmetric to the median with the respect to the internal bisector (all relative to the same vertex). In the triangle $ABC$, the median $m_a$ meets $BC$ at $A'$ and the circumcircle again at $A_1$. The symmedian $s_a$ meets $BC$ at $M$ and the circumcircle again at $A_2$. Given that the line $A_1A_2$ contains the circumcenter $O$ of the triangle, prove that:
[i](a) [/i]$\frac{AA'}{AM} = \frac{b^2+c^2}{2bc} ;$
[i](b) [/i]$1+4b^2c^2 = a^2(b^2+c^2)$
2007 International Zhautykov Olympiad, 2
Let $ABCD$ be a convex quadrilateral, with $\angle BAC=\angle DAC$ and $M$ a point inside such that $\angle MBA=\angle MCD$ and $\angle MBC=\angle MDC$. Show that the angle $\angle ADC$ is equal to $\angle BMC$ or $\angle AMB$.
2000 Irish Math Olympiad, 2
In a cyclic quadrilateral $ ABCD, a,b,c,d$ are its side lengths, $ Q$ its area, and $ R$ its circumradius. Prove that:
$ R^2\equal{}\frac{(ab\plus{}cd)(ac\plus{}bd)(ad\plus{}bc)}{16Q^2}$.
Deduce that $ R \ge \frac{(abcd)^{\frac{3}{4}}}{Q\sqrt{2}}$ with equality if and only if $ ABCD$ is a square.
2010 Contests, 1
Let $ABCDEF$ be a convex hexagon in which diagonals $AD, BE, CF$ are concurrent at $O$. Suppose $[OAF]$ is geometric mean of $[OAB]$ and $[OEF]$ and $[OBC]$ is geometric mean of $[OAB]$ and $[OCD]$. Prove that $[OED]$ is the geometric mean of $[OCD]$ and $[OEF]$.
(Here $[XYZ]$ denotes are of $\triangle XYZ$)
1998 Korea - Final Round, 1
Let $ x,y,z$ be positive real numbers satisfying $ x\plus{}y\plus{}z\equal{}xyz$. Prove that:
\[\frac1{\sqrt{1+x^2}}+\frac1{\sqrt{1+y^2}}+\frac1{\sqrt{1+z^2}}\leq\frac{3}{2}\]