This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2009 AMC 12/AHSME, 19

Andrea inscribed a circle inside a regular pentagon, circumscribed a circle around the pentagon, and calculated the area of the region between the two circles. Bethany did the same with a regular heptagon (7 sides). The areas of the two regions were $ A$ and $ B$, respectively. Each polygon had a side length of $ 2$. Which of the following is true? $ \textbf{(A)}\ A\equal{}\frac{25}{49}B\qquad \textbf{(B)}\ A\equal{}\frac{5}{7}B\qquad \textbf{(C)}\ A\equal{}B\qquad \textbf{(D)}\ A\equal{}\frac{7}{5}B\qquad \textbf{(E)}\ A\equal{}\frac{49}{25}B$

1979 IMO Longlists, 6

Prove that $\frac 12 \cdot \sqrt{4\sin^2 36^{\circ} - 1}=\cos 72^\circ$.

2020 LIMIT Category 2, 18

Evaluate the following sum: $n \choose 1$ $\sin (a) +$ $n \choose 2$ $\sin (2a) +...+$ $n \choose n$ $\sin (na)$ (A) $2^n \cos^n \left(\frac{a}{2}\right)\sin \left(\frac{na}{2}\right)$ (B) $2^n \sin^n \left(\frac{a}{2}\right)\cos \left(\frac{na}{2}\right)$ (C) $2^n \sin^n \left(\frac{a}{2}\right)\sin \left(\frac{na}{2}\right)$ (D) $2^n \cos^n \left(\frac{a}{2}\right)\cos \left(\frac{na}{2}\right)$

2011 Purple Comet Problems, 14

The lengths of the three sides of a right triangle form a geometric sequence. The sine of the smallest of the angles in the triangle is $\tfrac{m+\sqrt{n}}{k}$ where $m$, $n$, and $k$ are integers, and $k$ is not divisible by the square of any prime. Find $m + n + k$.

2001 AIME Problems, 14

There are $2n$ complex numbers that satisfy both $z^{28}-z^{8}-1=0$ and $|z|=1$. These numbers have the form $z_{m}=\cos\theta_{m}+i\sin\theta_{m}$, where $0\leq\theta_{1}<\theta_{2}< \dots <\theta_{2n}<360$ and angles are measured in degrees. Find the value of $\theta_{2}+\theta_{4}+\dots+\theta_{2n}$.

2013 District Olympiad, 3

Problem 3. Let $f:\left[ 0,\frac{\pi }{2} \right]\to \left[ 0,\infty \right)$ an increasing function .Prove that: (a) $\int_{0}^{\frac{\pi }{2}}{\left( f\left( x \right)-f\left( \frac{\pi }{4} \right) \right)}\left( \sin x-\cos x \right)dx\ge 0.$ (b) Exist $a\in \left[ \frac{\pi }{4},\frac{\pi }{2} \right]$ such that $\int_{0}^{a}{f\left( x \right)\sin x\ dx=}\int_{0}^{a}{f\left( x \right)\cos x\ dx}.$

2012 Today's Calculation Of Integral, 800

For a positive constant $a$, find the minimum value of $f(x)=\int_0^{\frac{\pi}{2}} |\sin t-ax\cos t|dt.$

2003 Hungary-Israel Binational, 2

Let $ABC$ be an acute-angled triangle. The tangents to its circumcircle at $A, B, C$ form a triangle $PQR$ with $C \in PQ$ and $B \in PR$. Let $C_{1}$ be the foot of the altitude from $C$ in $\Delta ABC$ . Prove that $CC_{1}$ bisects $\widehat{QC_{1}P}$ .

2018 Mathematical Talent Reward Programme, MCQ: P 5

Let the maximum and minimum value of $f(x)=\cos \left(x^{2018}\right) \sin x$ are $M$ and $m$ respectively where $x \in[-2 \pi, 2 \pi] .$ Then $$ M+m= $$ [list=1] [*] $\frac{1}{2}$ [*] $-\frac{1}{\sqrt{2}}$ [*] $\frac{1}{2018}$ [*] Does not exists [/list]

1967 IMO Shortlist, 6

Prove the identity \[\sum\limits_{k=0}^n\binom{n}{k}\left(\tan\frac{x}{2}\right)^{2k}\left(1+\frac{2^k}{\left(1-\tan^2\frac{x}{2}\right)^k}\right)=\sec^{2n}\frac{x}{2}+\sec^n x\] for any natural number $n$ and any angle $x.$

2012 China Team Selection Test, 1

In an acute-angled $ABC$, $\angle A>60^{\circ}$, $H$ is its orthocenter. $M,N$ are two points on $AB,AC$ respectively, such that $\angle HMB=\angle HNC=60^{\circ}$. Let $O$ be the circumcenter of triangle $HMN$. $D$ is a point on the same side with $A$ of $BC$ such that $\triangle DBC$ is an equilateral triangle. Prove that $H,O,D$ are collinear.

JBMO Geometry Collection, 2001

Let $ABC$ be an equilateral triangle and $D$, $E$ points on the sides $[AB]$ and $[AC]$ respectively. If $DF$, $EF$ (with $F\in AE$, $G\in AD$) are the interior angle bisectors of the angles of the triangle $ADE$, prove that the sum of the areas of the triangles $DEF$ and $DEG$ is at most equal with the area of the triangle $ABC$. When does the equality hold? [i]Greece[/i]

2014 Peru MO (ONEM), 1

Find all triples ( $\alpha, \beta,\theta$) of acute angles such that the following inequalities are fulfilled at the same time $$(\sin \alpha + \cos \beta + 1)^2 \ge 2(\sin \alpha + 1)(\cos \beta + 1)$$ $$(\sin \beta + \cos \theta + 1)^2 \ge 2(\sin \beta + 1)(\cos \theta + 1)$$ $$(\sin \theta + \cos \alpha + 1)^2 \ge 2(\sin \theta + 1)(\cos \alpha + 1).$$

2007 F = Ma, 26

A sled loaded with children starts from rest and slides down a snowy $25^\circ$ (with respect to the horizontal) incline traveling $85$ meters in $17$ seconds. Ignore air resistance. What is the coefficient of kinetic friction between the sled and the slope? $ \textbf {(A) } 0.36 \qquad \textbf {(B) } 0.40 \qquad \textbf {(C) } 0.43 \qquad \textbf {(D) } 1.00 \qquad \textbf {(E) } 2.01 $

2005 China Girls Math Olympiad, 2

Find all ordered triples $ (x, y, z)$ of real numbers such that \[ 5 \left(x \plus{} \frac{1}{x} \right) \equal{} 12 \left(y \plus{} \frac{1}{y} \right) \equal{} 13 \left(z \plus{} \frac{1}{z} \right),\] and \[ xy \plus{} yz \plus{} zy \equal{} 1.\]

1965 IMO, 1

Determine all values of $x$ in the interval $0 \leq x \leq 2\pi$ which satisfy the inequality \[ 2 \cos{x} \leq \sqrt{1+\sin{2x}}-\sqrt{1-\sin{2x}} \leq \sqrt{2}. \]

2005 Taiwan TST Round 1, 1

Consider a circle $O_1$ with radius $R$ and a point $A$ outside the circle. It is known that $\angle BAC=60^\circ$, where $AB$ and $AC$ are tangent to $O_1$. We construct infinitely many circles $O_i$ $(i=1,2,\dots\>)$ such that for $i>1$, $O_i$ is tangent to $O_{i-1}$ and $O_{i+1}$, that they share the same tangent lines $AB$ and $AC$ with respect to $A$, and that none of the $O_i$ are larger than $O_1$. Find the total area of these circles. I know this problem was easy, but it still appeared in the TST, and so I posted it. It was kind of a disappointment for me.

2000 Iran MO (3rd Round), 1

Two circles intersect at two points $A$ and $B$. A line $\ell$ which passes through the point $A$ meets the two circles again at the points $C$ and $D$, respectively. Let $M$ and $N$ be the midpoints of the arcs $BC$ and $BD$ (which do not contain the point $A$) on the respective circles. Let $K$ be the midpoint of the segment $CD$. Prove that $\measuredangle MKN = 90^{\circ}$.

2008 Romania Team Selection Test, 3

Show that each convex pentagon has a vertex from which the distance to the opposite side of the pentagon is strictly less than the sum of the distances from the two adjacent vertices to the same side. [i]Note[/i]. If the pentagon is labeled $ ABCDE$, the adjacent vertices of $ A$ are $ B$ and $ E$, the ones of $ B$ are $ A$ and $ C$ etc.

2020 LIMIT Category 2, 10

In a triangle $\triangle XYZ$, $\tan(x)\tan(z)=2$, $\tan(y)\tan(z)=18$. Then what is $\tan^2(z)$?

1966 IMO Shortlist, 50

Solve the equation $\frac{1}{\sin x}+\frac{1}{\cos x}=\frac 1p$ where $p$ is a real parameter. Discuss for which values of $p$ the equation has at least one real solution and determine the number of solutions in $[0, 2\pi)$ for a given $p.$

2005 All-Russian Olympiad, 3

We have an acute-angled triangle $ABC$, and $AA',BB'$ are its altitudes. A point $D$ is chosen on the arc $ACB$ of the circumcircle of $ABC$. If $P=AA'\cap BD,Q=BB'\cap AD$, show that the midpoint of $PQ$ lies on $A'B'$.

2005 JBMO Shortlist, 3

Let $ABCDEF$ be a regular hexagon and $M\in (DE)$, $N\in(CD)$ such that $m (\widehat {AMN}) = 90^\circ$ and $AN = CM \sqrt {2}$. Find the value of $\frac{DM}{ME}$.

1987 Romania Team Selection Test, 9

Prove that for all real numbers $\alpha_1,\alpha_2,\ldots,\alpha_n$ we have \[ \sum_{i=1}^n \sum_{j=1}^n ij \cos {(\alpha_i - \alpha_j )} \geq 0. \] [i]Octavian Stanasila[/i]

2014 PUMaC Geometry A, 6

$\triangle ABC$ has side lengths $AB=15$, $BC=34$, and $CA=35$. Let the circumcenter of $ABC$ be $O$. Let $D$ be the foot of the perpendicular from $C$ to $AB$. Let $R$ be the foot of the perpendicular from $D$ to $AC$, and let $W$ be the perpendicular foot from $D$ to $BC$. Find the area of quadrilateral $CROW$.