This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2000 Turkey Team Selection Test, 2

Points $M,\ N,\ K,\ L$ are taken on the sides $AB,\ BC,\ CD,\ DA$ of a rhombus $ABCD,$ respectively, in such a way that $MN\parallel LK$ and the distance between $MN$ and $KL$ is equal to the height of $ABCD.$ Show that the circumcircles of the triangles $ALM$ and $NCK$ intersect each other, while those of $LDK$ and $MBN$ do not.

1988 Balkan MO, 1

Let $ABC$ be a triangle and let $M,N,P$ be points on the line $BC$ such that $AM,AN,AP$ are the altitude, the angle bisector and the median of the triangle, respectively. It is known that $\frac{[AMP]}{[ABC]}=\frac{1}{4}$ and $\frac{[ANP]}{[ABC]}=1-\frac{\sqrt{3}}{2}$. Find the angles of triangle $ABC$.

1983 AMC 12/AHSME, 19

Point $D$ is on side $CB$ of triangle $ABC$. If \[ \angle{CAD} = \angle{DAB} = 60^\circ,\quad AC = 3\quad\mbox{ and }\quad AB = 6, \] then the length of $AD$ is $\text{(A)} \ 2 \qquad \text{(B)} \ 2.5 \qquad \text{(C)} \ 3 \qquad \text{(D)} \ 3.5 \qquad \text{(E)} \ 4$

2015 AMC 10, 17

A line that passes through the origin intersects both the line $x=1$ and the line $y=1+\frac{\sqrt{3}}{3}x$. The three lines create an equilateral triangle. What is the perimeter of the triangle? $ \textbf{(A) }2\sqrt{6}\qquad\textbf{(B) }2+2\sqrt{3}\qquad\textbf{(C) }6\qquad\textbf{(D) }3+2\sqrt{3}\qquad\textbf{(E) }6+\frac{\sqrt{3}}{3} $

2006 IberoAmerican Olympiad For University Students, 2

Prove that for any positive integer $n$ and any real numbers $a_1,a_2,\cdots,a_n,b_1,b_2,\cdots,b_n$ we have that the equation \[a_1 \sin(x) + a_2 \sin(2x) +\cdots+a_n\sin(nx)=b_1 \cos(x)+b_2\cos(2x)+\cdots +b_n \cos(nx)\] has at least one real root.

2012 France Team Selection Test, 2

Let $ABC$ be an acute-angled triangle with $AB\not= AC$. Let $\Gamma$ be the circumcircle, $H$ the orthocentre and $O$ the centre of $\Gamma$. $M$ is the midpoint of $BC$. The line $AM$ meets $\Gamma$ again at $N$ and the circle with diameter $AM$ crosses $\Gamma$ again at $P$. Prove that the lines $AP,BC,OH$ are concurrent if and only if $AH=HN$.

1998 Irish Math Olympiad, 2

The distances from a point $ P$ inside an equilateral triangle to the vertices of the triangle are $ 3,4$, and $ 5$. Find the area of the triangle.

2013 Math Prize For Girls Problems, 7

In the figure below, $\triangle ABC$ is an equilateral triangle. [asy] import graph; unitsize(60); axes("$x$", "$y$", (0, 0), (1.5, 1.5), EndArrow); real w = sqrt(3) - 1; pair A = (1, 1); pair B = (0, w); pair C = (w, 0); draw(A -- B -- C -- cycle); dot(Label("$A(1, 1)$", A, NE), A); dot(Label("$B$", B, W), B); dot(Label("$C$", C, S), C); [/asy] Point $A$ has coordinates $(1, 1)$, point $B$ is on the positive $y$-axis, and point $C$ is on the positive $x$-axis. What is the area of $\triangle ABC$?

2002 France Team Selection Test, 2

Let $ ABC$ be a non-equilateral triangle. Denote by $ I$ the incenter and by $ O$ the circumcenter of the triangle $ ABC$. Prove that $ \angle AIO\leq\frac{\pi}{2}$ holds if and only if $ 2\cdot BC\leq AB\plus{}AC$.

V Soros Olympiad 1998 - 99 (Russia), 11.7

Prove that for all positive and admissible values of $x$ the following inequality holds: $$\sin x + arc \sin x>2x$$

2005 Taiwan TST Round 1, 2

$P$ is a point in the interior of $\triangle ABC$, and $\angle ABP = \angle PCB = 10^\circ$. (a) If $\angle PBC = 10^\circ$ and $\angle ACP = 20^\circ$, what is the value of $\angle BAP$? (b) If $\angle PBC = 20^\circ$ and $\angle ACP = 10^\circ$, what is the value of $\angle BAP$?

2014 Taiwan TST Round 3, 2

In a triangle $ABC$, let $D$ and $E$ be the feet of the angle bisectors of angles $A$ and $B$, respectively. A rhombus is inscribed into the quadrilateral $AEDB$ (all vertices of the rhombus lie on different sides of $AEDB$). Let $\varphi$ be the non-obtuse angle of the rhombus. Prove that $\varphi \le \max \{ \angle BAC, \angle ABC \}$.

2008 Thailand Mathematical Olympiad, 1

Let $\vartriangle ABC$ be a triangle with $\angle BAC = 90^o$ and $\angle ABC = 60^o$. Point $E$ is chosen on side $BC$ so that $BE : EC = 3 : 2$. Compute $\cos\angle CAE$.

2004 India IMO Training Camp, 1

Prove that in any triangle $ABC$, \[ 0 < \cot { \left( \frac{A}{4} \right)} - \tan{ \left( \frac{B}{4} \right) } - \tan{ \left( \frac{C}{4} \right) } - 1 < 2 \cot { \left( \frac{A}{2} \right) }. \]

2013 IPhOO, 10

A young baseball player thinks he has hit a home run and gets excited, but, instead, he has just hit it to an outfielder who is just able to catch the ball, and does so at ground level. The ball was hit at a height of 1.5 meters from the ground at an angle $\phi$ above the horizontal axis. The catch was taken at a horizontal distance 30 meters from home plate, which was where the batter hit the ball. The ball left the bat at a speed of 21 m/s. Find all possible values $0<\phi<90^\circ$, in degrees, rounded to the nearest integer. You may use WolframAlpha, Mathematica, or a graphing aid to compute $\phi$ after you derive an expression to solve for it. [i](Proposed by Ahaan Rungta)[/i]

1987 India National Olympiad, 9

Prove that any triangle having two equal internal angle bisectors (each measured from a vertex to the opposite side) is isosceles.

2015 SDMO (High School), 3

Tags: trigonometry
Let $p$ be an odd prime. Show that $\frac{1}{\pi}\cdot\cos^{-1}\left(\frac{1}{p}\right)$ is irrational. (Note: $\cos^{-1}\left(x\right)$ is defined to be the unique $y$ with $0\leq y\leq\pi$ such that $\cos\left(y\right)=x$.)

2001 Junior Balkan MO, 2

Let $ABC$ be a triangle with $\angle C = 90^\circ$ and $CA \neq CB$. Let $CH$ be an altitude and $CL$ be an interior angle bisector. Show that for $X \neq C$ on the line $CL$, we have $\angle XAC \neq \angle XBC$. Also show that for $Y \neq C$ on the line $CH$ we have $\angle YAC \neq \angle YBC$. [i]Bulgaria[/i]

2012 Turkmenistan National Math Olympiad, 5

Let $O$ be the center of $\bigtriangleup ABC$'s circumcircle. $CO$ line intersect $AB$ at $D$ and $BO$ line intersect $AC$ at $E$. If $\angle A=\angle CDE=50$° then find $\angle ADE$

1983 IMO Shortlist, 25

Prove that every partition of $3$-dimensional space into three disjoint subsets has the following property: One of these subsets contains all possible distances; i.e., for every $a \in \mathbb R^+$, there are points $M$ and $N$ inside that subset such that distance between $M$ and $N$ is exactly $a.$

2009 Today's Calculation Of Integral, 511

Suppose that $ f(x),\ g(x)$ are differential fuctions and their derivatives are continuous. Find $ f(x),\ g(x)$ such that $ f(x)\equal{}\frac 12\minus{}\int_0^x \{f'(t)\plus{}g(t)\}\ dt\ \ g(x)\equal{}\sin x\minus{}\int_0^{\pi} \{f(t)\minus{}g'(t)\}\ dt$.

1994 Korea National Olympiad, Problem 3

Let $\alpha,\beta ,\gamma$ be the angles of $\triangle ABC$. a) Show that $cos^2\alpha +cos^2\beta +cos^2 \gamma =1-2cos\alpha cos\beta cos\gamma$ . b) Given that $cos\alpha : cos\beta : cos\gamma = 39 : 33 : 25$, find $sin\alpha : sin\beta : sin\gamma$ .

1969 IMO Longlists, 16

$(CZS 5)$ A convex quadrilateral $ABCD$ with sides $AB = a, BC = b, CD = c, DA = d$ and angles $\alpha = \angle DAB, \beta = \angle ABC, \gamma = \angle BCD,$ and $\delta = \angle CDA$ is given. Let $s = \frac{a + b + c +d}{2}$ and $P$ be the area of the quadrilateral. Prove that $P^2 = (s - a)(s - b)(s - c)(s - d) - abcd \cos^2\frac{\alpha +\gamma}{2}$

2013 ELMO Shortlist, 10

Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$. [i]Proposed by David Stoner[/i]

2004 Turkey Team Selection Test, 1

Find all possible values of $x-\lfloor x\rfloor$ if $\sin \alpha = 3/5$ and $x=5^{2003}\sin {(2004\alpha)}$.