Found problems: 3349
2011 ELMO Shortlist, 7
Determine whether there exist two reals $x,y$ and a sequence $\{a_n\}_{n=0}^{\infty}$ of nonzero reals such that $a_{n+2}=xa_{n+1}+ya_n$ for all $n\ge0$ and for every positive real number $r$, there exist positive integers $i,j$ such that $|a_i|<r<|a_j|$.
[i]Alex Zhu.[/i]
2007 Pre-Preparation Course Examination, 3
$ABC$ is an arbitrary triangle. $A',B',C'$ are midpoints of arcs $BC, AC, AB$. Sides of triangle $ABC$, intersect sides of triangle $A'B'C'$ at points $P,Q,R,S,T,F$. Prove that \[\frac{S_{PQRSTF}}{S_{ABC}}=1-\frac{ab+ac+bc}{(a+b+c)^{2}}\]
2022 Romania EGMO TST, P3
Let be given a parallelogram $ ABCD$ and two points $ A_1$, $ C_1$ on its sides $ AB$, $ BC$, respectively. Lines $ AC_1$ and $ CA_1$ meet at $ P$. Assume that the circumcircles of triangles $ AA_1P$ and $ CC_1P$ intersect at the second point $ Q$ inside triangle $ ACD$. Prove that $ \angle PDA \equal{} \angle QBA$.
2005 AIME Problems, 14
Consider the points $A(0,12)$, $B(10,9)$, $C(8,0)$, and $D(-4,7)$. There is a unique square $S$ such that each of the four points is on a different side of $S$. Let $K$ be the area of $S$. Find the remainder when $10K$ is divided by $1000$.
2005 China Northern MO, 5
Let $x, y, z$ be positive real numbers such that $x^2 + xy + y^2 = \frac{25}{4}$, $y^2 + yz + z^2 = 36$, and $z^2 + zx + x^2 = \frac{169}{4}$. Find the value of $xy + yz + zx$.
1970 Vietnam National Olympiad, 5
A plane $p$ passes through a vertex of a cube so that the three edges at the vertex make equal angles with $p$. Find the cosine of this angle. Find the positions of the feet of the perpendiculars from the vertices of the cube onto $p$. There are 28 lines through two vertices of the cube and 20 planes through three vertices of the cube. Find some relationship between these lines and planes and the plane $p$.
IV Soros Olympiad 1997 - 98 (Russia), 10.7
How many different solutions on the interval $[0, \pi]$ does the equation $$6\sqrt2 \sin x \cdot tgx - 2\sqrt2 tgx +3\sin x -1=0$$ have?
2013 Today's Calculation Of Integral, 866
Given a solid $R$ contained in a semi cylinder with the hight $1$ which has a semicircle with radius $1$ as the base. The cross section at the hight $x\ (0\leq x\leq 1)$ is the form combined with two right-angled triangles as attached figure as below. Answer the following questions.
(1) Find the cross-sectional area $S(x)$ at the hight $x$.
(2) Find the volume of $R$. If necessary, when you integrate, set $x=\sin t.$
2001 Stanford Mathematics Tournament, 15
Let $ABC$ be an isosceles triangle with $\angle{ABC} = \angle{ACB} = 80^\circ$. Let $D$ be a point on $AB$ such that $\angle{DCB} = 60^\circ$ and $E$ be a point on $AC$ such that $\angle{ABE} = 30^\circ$. Find $\angle{CDE}$ in degrees.
2014 Contests, 2
Consider two circles of radius one, and let $O$ and $O'$ denote their centers. Point $M$ is selected on either circle. If $OO' = 2014$, what is the largest possible area of triangle $OMO'$?
[i]Proposed by Evan Chen[/i]
2014 Online Math Open Problems, 21
Consider a sequence $x_1,x_2,\cdots x_{12}$ of real numbers such that $x_1=1$ and for $n=1,2,\dots,10$ let \[ x_{n+2}=\frac{(x_{n+1}+1)(x_{n+1}-1)}{x_n}. \] Suppose $x_n>0$ for $n=1,2,\dots,11$ and $x_{12}=0$. Then the value of $x_2$ can be written as $\frac{\sqrt{a}+\sqrt{b}}{c}$ for positive integers $a,b,c$ with $a>b$ and no square dividing $a$ or $b$. Find $100a+10b+c$.
[i]Proposed by Michael Kural[/i]
2008 IberoAmerican, 2
Given a triangle $ ABC$, let $ r$ be the external bisector of $ \angle ABC$. $ P$ and $ Q$ are the feet of the perpendiculars from $ A$ and $ C$ to $ r$. If $ CP \cap BA \equal{} M$ and $ AQ \cap BC\equal{}N$, show that $ MN$, $ r$ and $ AC$ concur.
1998 China National Olympiad, 1
Let $ABC$ be a non-obtuse triangle satisfying $AB>AC$ and $\angle B=45^{\circ}$. The circumcentre $O$ and incentre $I$ of triangle $ABC$ are such that $\sqrt{2}\ OI=AB-AC$. Find the value of $\sin A$.
2011 Romanian Master of Mathematics, 3
A triangle $ABC$ is inscribed in a circle $\omega$.
A variable line $\ell$ chosen parallel to $BC$ meets segments $AB$, $AC$ at points $D$, $E$ respectively, and meets $\omega$ at points $K$, $L$ (where $D$ lies between $K$ and $E$).
Circle $\gamma_1$ is tangent to the segments $KD$ and $BD$ and also tangent to $\omega$, while circle $\gamma_2$ is tangent to the segments $LE$ and $CE$ and also tangent to $\omega$.
Determine the locus, as $\ell$ varies, of the meeting point of the common inner tangents to $\gamma_1$ and $\gamma_2$.
[i](Russia) Vasily Mokin and Fedor Ivlev[/i]
2009 Today's Calculation Of Integral, 462
Evaluate $ \int_0^1 \frac{(1\minus{}x\plus{}x^2)\cos \ln (x\plus{}\sqrt{1\plus{}x^2})\minus{}\sqrt{1\plus{}x^2}\sin \ln (x\plus{}\sqrt{1\plus{}x^2})}{(1\plus{}x^2)^{\frac{3}{2}}}\ dx$.
1991 AIME Problems, 11
Twelve congruent disks are placed on a circle $C$ of radius 1 in such a way that the twelve disks cover $C$, no two of the disks overlap, and so that each of the twelve disks is tangent to its two neighbors. The resulting arrangement of disks is shown in the figure below. The sum of the areas of the twelve disks can be written in the from $\pi(a-b\sqrt{c})$, where $a,b,c$ are positive integers and $c$ is not divisible by the square of any prime. Find $a+b+c$.
[asy]
real r=2-sqrt(3);
draw(Circle(origin, 1));
int i;
for(i=0; i<12; i=i+1) {
draw(Circle(dir(30*i), r));
dot(dir(30*i));
}
draw(origin--(1,0)--dir(30)--cycle);
label("1", (0.5,0), S);[/asy]
2007 F = Ma, 18
A small chunk of ice falls from rest down a frictionless parabolic ice sheet shown in the figure. At the point labeled $\mathbf{A}$ in the diagram, the ice sheet becomes a steady, rough incline of angle $30^\circ$ with respect to the horizontal and friction coefficient $\mu_k$. This incline is of length $\frac{3}{2}h$ and ends at a cliff. The chunk of ice comes to a rest precisely at the end of the incline. What is the coefficient of friction $\mu_k$?
[asy]
size(200);
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
draw((0,0)--(sqrt(3),0)--(0,1));
draw(anglemark((0,1),(sqrt(3),0),(0,0)));
label("$30^\circ$",(1.5,0.03),NW);
label("A", (0,1),NE);
dot((0,1));
label("rough incline",(0.4,0.4));
draw((0.4,0.5)--(0.5,0.6),EndArrow);
dot((-0.2,4/3));
label("parabolic ice sheet",(0.6,4/3));
draw((0.05,1.3)--(-0.05,1.2),EndArrow);
label("ice chunk",(-0.5,1.6));
draw((-0.3,1.5)--(-0.25,1.4),EndArrow);
draw((-0.2,4/3)--(-0.19, 1.30083)--(-0.18,1.27)--(-0.17,1.240833)--(-0.16,1.21333)--(-0.15,1.1875)--(-0.14,1.16333)--(-0.13,1.140833)--(-0.12,1.12)--(-0.11,1.100833)--(-0.10,1.08333)--(-0.09,1.0675)--(-0.08,1.05333)--(-0.07,1.040833)--(-0.06,1.03)--(-0.05,1.020833)--(-0.04,1.01333)--(-0.03,1.0075)--(-0.02,1.00333)--(-0.01,1.000833)--(0,1));
draw((-0.6,0)--(-0.6,4/3),dashed,EndArrow,BeginArrow);
label("$h$",(-0.6,2/3),W);
draw((0.2,1.2)--(sqrt(3)+0.2,0.2),dashed,EndArrow,BeginArrow);
label("$\frac{3}{2}h$",(sqrt(3)/2+0.2,0.7),NE);
[/asy]
$ \textbf{(A)}\ 0.866\qquad\textbf{(B)}\ 0.770\qquad\textbf{(C)}\ 0.667\qquad\textbf{(D)}\ 0.385\qquad\textbf{(E)}\ 0.333 $
2006 Iran Team Selection Test, 5
Let $ABC$ be a triangle such that it's circumcircle radius is equal to the radius of outer inscribed circle with respect to $A$.
Suppose that the outer inscribed circle with respect to $A$ touches $BC,AC,AB$ at $M,N,L$.
Prove that $O$ (Center of circumcircle) is the orthocenter of $MNL$.
2005 Bulgaria Team Selection Test, 1
Let $ABC$ be an acute triangle. Find the locus of the points $M$, in the interior of $\bigtriangleup ABC$, such that $AB-FG= \frac{MF.AG+MG.BF}{CM}$, where $F$ and $G$ are the feet of the perpendiculars from $M$ to the lines $BC$ and $AC$, respectively.
2011 Today's Calculation Of Integral, 712
Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \left\{\frac{1}{\tan x\ (\ln \sin x)}+\frac{\tan x}{\ln \cos x}\right\}\ dx.$
2008 India Regional Mathematical Olympiad, 6
Find the number of all integer-sided [i]isosceles obtuse-angled[/i] triangles with perimeter $ 2008$.
[16 points out of 100 for the 6 problems]
2004 Nicolae Coculescu, 2
Solve in the real numbers the equation:
$$ \cos^2 \frac{(x-2)\pi }{4} +\cos\frac{(x-2)\pi }{3} =\log_3 (x^2-4x+6) $$
[i]Gheorghe Mihai[/i]
2012 India National Olympiad, 1
Let $ABCD$ be a quadrilateral inscribed in a circle. Suppose $AB=\sqrt{2+\sqrt{2}}$ and $AB$ subtends $135$ degrees at center of circle . Find the maximum possible area of $ABCD$.
2006 Poland - Second Round, 2
Point $C$ is a midpoint of $AB$. Circle $o_1$ which passes through $A$ and $C$ intersect circle $o_2$ which passes through $B$ and $C$ in two different points $C$ and $D$. Point $P$ is a midpoint of arc $AD$ of circle $o_1$ which doesn't contain $C$. Point $Q$ is a midpoint of arc $BD$ of circle $o_2$ which doesn't contain $C$. Prove that $PQ \perp CD$.
1994 Brazil National Olympiad, 2
Given any convex polygon, show that there are three consecutive vertices such that the polygon lies inside the circle through them.