This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2021 China Second Round Olympiad, Problem 2

Tags: trigonometry
Compute the value of $$\sin^2 20^{\circ} + \cos^2 50^{\circ} + \sin 20^{\circ} \cos 50^{\circ}.$$ [i](Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 2)[/i]

2002 Tournament Of Towns, 4

$x,y,z\in\left(0,\frac{\pi}{2}\right)$ are given. Prove that: \[ \frac{x\cos x+y\cos y+z\cos z}{x+y+z}\le \frac{\cos x+\cos y+\cos z}{3} \]

2022 ISI Entrance Examination, 8

Find the minimum value of $$\big|\sin x+\cos x+\tan x+\cot x+\sec x+\operatorname{cosec}x\big|$$ for real numbers $x$ not multiple of $\frac{\pi}{2}$.

2012 AIME Problems, 12

Let $\triangle ABC$ be a right triangle with right angle at $C$. Let $D$ and $E$ be points on $\overline{AB}$ with $D$ between $A$ and $E$ such that $\overline{CD}$ and $\overline{CE}$ trisect $\angle C$. If $\frac{DE}{BE} = \frac{8}{15}$, then $\tan B$ can be written as $\frac{m\sqrt{p}}{n}$, where $m$ and $n$ are relatively prime positive integers, and $p$ is a positive integer not divisible by the square of any prime. Find $m+n+p$.

1990 IMO Shortlist, 11

Chords $ AB$ and $ CD$ of a circle intersect at a point $ E$ inside the circle. Let $ M$ be an interior point of the segment $ EB$. The tangent line at $ E$ to the circle through $ D$, $ E$, and $ M$ intersects the lines $ BC$ and $ AC$ at $ F$ and $ G$, respectively. If \[ \frac {AM}{AB} \equal{} t, \] find $\frac {EG}{EF}$ in terms of $ t$.

2011 Today's Calculation Of Integral, 681

Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{1-2\sin 2x+3\cos ^ 2 x}\ dx.$ [i]2011 University of Occupational and Environmental Health/Medicine entrance exam[/i]

2012 NIMO Problems, 7

For every pair of reals $0 < a < b < 1$, we define sequences $\{x_n\}_{n \ge 0}$ and $\{y_n\}_{n \ge 0}$ by $x_0 = 0$, $y_0 = 1$, and for each integer $n \ge 1$: \begin{align*} x_n & = (1 - a) x_{n - 1} + a y_{n - 1}, \\ y_n & = (1 - b) x_{n - 1} + b y_{n - 1}. \end{align*} The [i]supermean[/i] of $a$ and $b$ is the limit of $\{x_n\}$ as $n$ approaches infinity. Over all pairs of real numbers $(p, q)$ satisfying $\left (p - \textstyle\frac{1}{2} \right)^2 + \left (q - \textstyle\frac{1}{2} \right)^2 \le \left(\textstyle\frac{1}{10}\right)^2$, the minimum possible value of the supermean of $p$ and $q$ can be expressed as $\textstyle\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $100m + n$. [i]Proposed by Lewis Chen[/i]

2013 Princeton University Math Competition, 6

On a circle, points $A,B,C,D$ lie counterclockwise in this order. Let the orthocenters of $ABC,BCD,CDA,DAB$ be $H,I,J,K$ respectively. Let $HI=2$, $IJ=3$, $JK=4$, $KH=5$. Find the value of $13(BD)^2$.

2005 Georgia Team Selection Test, 2

In triangle $ ABC$ we have $ \angle{ACB} \equal{} 2\angle{ABC}$ and there exists the point $ D$ inside the triangle such that $ AD \equal{} AC$ and $ DB \equal{} DC$. Prove that $ \angle{BAC} \equal{} 3\angle{BAD}$.

1974 IMO Longlists, 37

Tags: trigonometry
Let $a, b$, and $c$ denote the three sides of a billiard table in the shape of an equilateral triangle. A ball is placed at the midpoint of side $a$ and then propelled toward side $b$ with direction defined by the angle $\theta$. For what values of $\theta$ will the ball strike the sides $b, c, a$ in that order?

2011 Tokio University Entry Examination, 1

On the coordinate plane, let $C$ be a circle centered $P(0,\ 1)$ with radius 1. let $a$ be a real number $a$ satisfying $0<a<1$. Denote by $Q,\ R$ intersection points of the line $y=a(x+1) $ and $C$. (1) Find the area $S(a)$ of $\triangle{PQR}$. (2) When $a$ moves in the range of $0<a<1$, find the value of $a$ for which $S(a)$ is maximized. [i]2011 Tokyo University entrance exam/Science, Problem 1[/i]

2011 Postal Coaching, 1

Let $ABCD$ be a quadrilateral with an inscribed circle, centre $O$. Let \[AO = 5, BO =6, CO = 7, DO = 8.\] If $M$ and $N$ are the midpoints of the diagonals $AC$ and $BD$, determine $\frac{OM}{ON}$ .

2007 China Northern MO, 1

Let $ \alpha$, $ \beta$ be acute angles. Find the maximum value of \[ \frac{\left(1-\sqrt{\tan\alpha\tan\beta}\right)^{2}}{\cot\alpha+\cot\beta}\]

2003 Bulgaria Team Selection Test, 5

Let $ABCD$ be a circumscribed quadrilateral and let $P$ be the orthogonal projection of its in center on $AC$. Prove that $\angle {APB}=\angle {APD}$

1954 AMC 12/AHSME, 40

Tags: trigonometry
If $ \left (a\plus{}\frac{1}{a} \right )^2\equal{}3$, then $ a^3\plus{}\frac{1}{a^3}$ equals: $ \textbf{(A)}\ \frac{10\sqrt{3}}{3} \qquad \textbf{(B)}\ 3\sqrt{3} \qquad \textbf{(C)}\ 0 \qquad \textbf{(D)}\ 7\sqrt{7} \qquad \textbf{(E)}\ 6\sqrt{3}$

2004 Iran MO (3rd Round), 29

Incircle of triangle $ ABC$ touches $ AB,AC$ at $ P,Q$. $ BI, CI$ intersect with $ PQ$ at $ K,L$. Prove that circumcircle of $ ILK$ is tangent to incircle of $ ABC$ if and only if $ AB\plus{}AC\equal{}3BC$.

2010 Harvard-MIT Mathematics Tournament, 9

Let $x(t)$ be a solution to the differential equation \[\left(x+x^\prime\right)^2+x\cdot x^{\prime\prime}=\cos t\] with $x(0)=x^\prime(0)=\sqrt{\frac{2}{5}}$. Compute $x\left(\dfrac{\pi}{4}\right)$.

2009 Today's Calculation Of Integral, 425

The coordinate of $ P$ at time $ t$, moving on a plane, is expressed by $ x = f(t) = \cos 2t + t\sin 2t,\ y = g(t) = \sin 2t - t\cos 2t$. (1) Find the acceleration vector $ \overrightarrow{\alpha}$ of $ P$ at time $ t$ . (2) Let $ L$ denote the line passing through the point $ P$ for the time $ t%Error. "neqo" is a bad command. $, which is parallel to the acceleration vector $ \overrightarrow{\alpha}$ at the time. Prove that $ L$ always touches to the unit circle with center the origin, then find the point of tangency $ Q$. (3) Prove that $ f(t)$ decreases in the interval $ 0\leq t \leqq \frac {\pi}{2}$. (4) When $ t$ varies in the range $ \frac {\pi}{4}\leq t\leq \frac {\pi}{2}$, find the area $ S$ of the figure formed by moving the line segment $ PQ$.

2020 Jozsef Wildt International Math Competition, W15

Show that the number$$4\sin\frac{\pi}{34}\left(\sin\frac{3\pi}{34}+\sin\frac{7\pi}{34}+\sin\frac{11\pi}{34}+\sin\frac{15\pi}{34}\right)$$ is an integer and determine it.

1998 China Team Selection Test, 3

For a fixed $\theta \in \lbrack 0, \frac{\pi}{2} \rbrack$, find the smallest $a \in \mathbb{R}^{+}$ which satisfies the following conditions: [b]I. [/b] $\frac{\sqrt a}{\cos \theta} + \frac{\sqrt a}{\sin \theta} > 1$. [b]II.[/b] There exists $x \in \lbrack 1 - \frac{\sqrt a}{\sin \theta}, \frac{\sqrt a}{\cos \theta} \rbrack$ such that $\lbrack (1 - x)\sin \theta - \sqrt{a - x^2 \cos^{2} \theta} \rbrack^{2} + \lbrack x\cos \theta - \sqrt{a - (1 - x)^2 \sin^{2} \theta} \rbrack^{2} \leq a$.

2013 F = Ma, 19

Tags: trigonometry
A simple pendulum experiment is constructed from a point mass $m$ attached to a pivot by a massless rod of length $L$ in a constant gravitational field. The rod is released from an angle $\theta_0 < \frac{\pi}{2}$ at rest and the period of motion is found to be $T_0$. Ignore air resistance and friction. At what angle $\theta_g$ during the swing is the tension in the rod the greatest? $\textbf{(A) } \text{The tension is greatest at } \theta_g = \theta_0.\\ \textbf{(B) } \text{The tension is greatest at }\theta_g = 0.\\ \textbf{(C) } \text{The tension is greatest at an angle } 0 < \theta_g < \theta_0.\\ \textbf{(D) } \text{The tension is constant.}\\ \textbf{(E) } \text{None of the above is true for all values of } \theta_0 \text{ with } 0 < \theta_{0} < \frac{\pi}{2}$

2011 India IMO Training Camp, 1

Let $ABC$ be a triangle each of whose angles is greater than $30^{\circ}$. Suppose a circle centered with $P$ cuts segments $BC$ in $T,Q; CA$ in $K,L$ and $AB$ in $M,N$ such that they are on a circle in counterclockwise direction in that order.Suppose further $PQK,PLM,PNT$ are equilateral. Prove that: $a)$ The radius of the circle is $\frac{2abc}{a^2+b^2+c^2+4\sqrt{3}S}$ where $S$ is area. $b) a\cdot AP=b\cdot BP=c\cdot PC.$

2002 USA Team Selection Test, 1

Let $ ABC$ be a triangle, and $ A$, $ B$, $ C$ its angles. Prove that \[ \sin\frac{3A}{2}+\sin\frac{3B}{2}+\sin\frac{3C}{2}\leq \cos\frac{A-B}{2}+\cos\frac{B-C}{2}+\cos\frac{C-A}{2}. \]

1998 USAMTS Problems, 4

Prove that if $0<x<\pi/2$, then $\sec^6 x+\csc^6 x+(\sec^6 x)(\csc^6 x)\geq 80$.

2005 Today's Calculation Of Integral, 73

Find the minimum value of $\int_0^{\pi} (a\sin x+b\sin 2x+c\sin 3x-x)^2\ dx$