This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

1988 Romania Team Selection Test, 11

Let $x,y,z$ be real numbers with $x+y+z=0$. Prove that \[ |\cos x |+ |\cos y| +| \cos z | \geq 1 . \] [i]Viorel Vajaitu, Bogdan Enescu[/i]

2009 Romanian Master of Mathematics, 4

For a finite set $ X$ of positive integers, let $ \Sigma(X) \equal{} \sum_{x \in X} \arctan \frac{1}{x}.$ Given a finite set $ S$ of positive integers for which $ \Sigma(S) < \frac{\pi}{2},$ show that there exists at least one finite set $ T$ of positive integers for which $ S \subset T$ and $ \Sigma(S) \equal{} \frac{\pi}{2}.$ [i]Kevin Buzzard, United Kingdom[/i]

2005 Today's Calculation Of Integral, 5

Calculate the following indefinite integrals. [1] $\int (4-5\tan x)\cos x dx$ [2] $\int \frac{dx}{\sqrt[3]{(1-3x)^2}}dx$ [3] $\int x^3\sqrt{4-x^2}dx$ [4] $\int e^{-x}\sin \left(x+\frac{\pi}{4}\right)dx$ [5] $\int (3x-4)^2 dx$

2003 USA Team Selection Test, 5

Let $A, B, C$ be real numbers in the interval $\left(0,\frac{\pi}{2}\right)$. Let \begin{align*} X &= \frac{\sin A\sin (A-B)\sin (A-C)}{\sin (B+C)} \\ Y &= \frac{\sin B\sin(B-C)\sin (B-A)}{\sin (C+A)} \\ Z &= \frac{\sin C\sin (C-A)\sin (C-B)}{\sin (A+B)} . \end{align*} Prove that $X+Y+Z \geq 0$.

2008 IMO Shortlist, 3

Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic. [i]Proposed by John Cuya, Peru[/i]

2015 Balkan MO Shortlist, G1

In an acute angled triangle $ABC$ , let $BB' $ and $CC'$ be the altitudes. Ray $C'B'$ intersects the circumcircle at $B''$ andl let $\alpha_A$ be the angle $\widehat{ABB''}$. Similarly are defined the angles $\alpha_B$ and $\alpha_C$. Prove that $$\displaystyle\sin \alpha _A \sin \alpha _B \sin \alpha _C\leq \frac{3\sqrt{6}}{32}$$ (Romania)

2004 Vietnam Team Selection Test, 2

Let us consider a convex hexagon ABCDEF. Let $A_1, B_1,C_1, D_1, E_1, F_1$ be midpoints of the sides $AB, BC, CD, DE, EF,FA$ respectively. Denote by $p$ and $p_1$, respectively, the perimeter of the hexagon $ A B C D E F $ and hexagon $ A_1B_1C_1D_1E_1F_1 $. Suppose that all inner angles of hexagon $ A_1B_1C_1D_1E_1F_1 $ are equal. Prove that \[ p \geq \frac{2 \cdot \sqrt{3}}{3} \cdot p_1 .\] When does equality hold ?

1976 Poland - Second Round, 5

Prove that if $ \cos \pi x =\frac{1}{3} $ then $ x $ is an irrational number.

2012 NIMO Problems, 4

In $\triangle ABC$, $AB = AC$. Its circumcircle, $\Gamma$, has a radius of 2. Circle $\Omega$ has a radius of 1 and is tangent to $\Gamma$, $\overline{AB}$, and $\overline{AC}$. The area of $\triangle ABC$ can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a, b, c$, where $b$ is squarefree and $\gcd (a, c) = 1$. Compute $a + b + c$. [i]Proposed by Aaron Lin[/i]

2005 Kazakhstan National Olympiad, 1

Solve equation \[2^{\tfrac{1}{2}-2|x|} = \left| {\tan x + \frac{1}{2}} \right| + \left| {\tan x - \frac{1}{2}} \right|\]

PEN G Problems, 25

Show that $\tan \left( \frac{\pi}{m} \right)$ is irrational for all positive integers $m \ge 5$.

Kvant 2022, M2712

Let $ABC$ be a triangle, with $\angle A=\alpha,\angle B=\beta$ and $\angle C=\gamma$. Prove that \[\sum_{\text{cyc}}\tan \frac{\alpha}{2}\tan\frac{\beta}{2}\cot\frac{\gamma}{2}\geqslant\sqrt{3}.\][i]Proposed by R. Regimov (Azerbaijan)[/i]

2013 Canadian Mathematical Olympiad Qualification Repechage, 2

In triangle $ABC$, $\angle A = 90^\circ$ and $\angle C = 70^\circ$. $F$ is point on $AB$ such that $\angle ACF = 30^\circ$, and $E$ is a point on $CA$ such that $\angle CF E = 20^\circ$. Prove that $BE$ bisects $\angle B$.

2008 Sharygin Geometry Olympiad, 9

(A.Zaslavsky, 9--10) The reflections of diagonal $ BD$ of a quadrilateral $ ABCD$ in the bisectors of angles $ B$ and $ D$ pass through the midpoint of diagonal $ AC$. Prove that the reflections of diagonal $ AC$ in the bisectors of angles $ A$ and $ C$ pass through the midpoint of diagonal $ BD$ (There was an error in published condition of this problem).

2011 Serbia JBMO TST, 3

Let $\triangle ABC$ be a right-angled triangle and $BC > AC$. $M$ is a point on $BC$ such that $BM = AC$ and $N$ is a point on $AC$ such that $AN = CM$. Find the angle between $BN$ and $AM$.

1995 Poland - First Round, 5

Given triangle $ABC$ in the plane such that $\angle CAB = a > \pi/2$. Let $PQ$ be a segment whose midpoint is the point $A$. Prove that $(BP+CQ) \tan a/2 \geq BC$.

2015 Baltic Way, 13

Let $D$ be the footpoint of the altitude from $B$ in the triangle $ABC$ , where $AB=1$ . The incircle of triangle $BCD$ coincides with the centroid of triangle $ABC$. Find the lengths of $AC$ and $BC$.

1996 Canadian Open Math Challenge, 10

Tags: trigonometry
Determine the sum of angles $A,B,$ where $0^\circ \leq A,B, \leq 180^\circ$ and \[ \sin A + \sin B = \sqrt{\frac{3}{2}}, \cos A + \cos B = \sqrt{\frac{1}{2}} \]

2005 Iran MO (3rd Round), 3

Prove that in acute-angled traingle ABC if $r$ is inradius and $R$ is radius of circumcircle then: \[a^2+b^2+c^2\geq 4(R+r)^2\]

2007 Romania National Olympiad, 1

Let $\mathcal{F}$ be the set of functions $f: [0,1]\to\mathbb{R}$ that are differentiable, with continuous derivative, and $f(0)=0$, $f(1)=1$. Find the minimum of $\int_{0}^{1}\sqrt{1+x^{2}}\cdot \big(f'(x)\big)^{2}\ dx$ (where $f\in\mathcal{F}$) and find all functions $f\in\mathcal{F}$ for which this minimum is attained. [hide="Comment"] In the contest, this was the b) point of the problem. The a) point was simply ``Prove the Cauchy inequality in integral form''. [/hide]

1991 Arnold's Trivium, 2

Find the limit \[\lim_{x\to0}\frac{\sin \tan x-\tan\sin x}{\arcsin\arctan x-\arctan\arcsin x}\]

2003 National High School Mathematics League, 4

Tags: trigonometry
If $x\in\left[-\frac{5\pi}{12},-\frac{\pi}{3}\right]$, then the maximum value of $y=\tan\left(x+\frac{2\pi}{3}\right)-\tan\left(x+\frac{\pi}{6}\right)+\cos\left(x+\frac{\pi}{6}\right)$ is $\text{(A)}\frac{12}{5}\sqrt2\qquad\text{(B)}\frac{11}{6}\sqrt2\qquad\text{(C)}\frac{11}{6}\sqrt3\qquad\text{(D)}\frac{12}{5}\sqrt3$

1986 IMO Longlists, 52

Solve the system of equations \[\tan x_1 +\cot x_1=3 \tan x_2,\]\[\tan x_2 +\cot x_2=3 \tan x_3,\]\[\vdots\]\[\tan x_n +\cot x_n=3 \tan x_1\]

2000 National Olympiad First Round, 13

Let $d$ be one of the common tangent lines of externally tangent circles $k_1$ and $k_2$. $d$ touches $k_1$ at $A$. Let $[AB]$ be a diameter of $k_1$. The tangent from $B$ to $k_2$ touches $k_2$ at $C$. If $|AB|=8$ and the diameter of $k_2$ is $7$, then what is $|BC|$? $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 6\sqrt 2 \qquad\textbf{(C)}\ 10 \qquad\textbf{(D)}\ 8 \qquad\textbf{(E)}\ 5\sqrt 3 $

2009 Today's Calculation Of Integral, 514

Prove the following inequalities: (1) $ x\minus{}\sin x\leq \tan x\minus{}x\ \ \left(0\leq x<\frac{\pi}{2}\right)$ (2) $ \int_0^x \cos (\tan t\minus{}t)\ dt\leq \sin (\sin x)\plus{}\frac 12 \left(x\minus{}\frac{\sin 2x}{2}\right)\ \left(0\leq x\leq \frac{\pi}{3}\right)$