Found problems: 3349
1964 AMC 12/AHSME, 35
The sides of a triangle are of lengths $13$, $14$, and $15$. The altitudes of the triangle meet at point $H$. If $AD$ is the altitude to the side length $14$, what is the ratio $HD:HA$?
$\textbf{(A) } 3 : 11\qquad
\textbf{(B) } 5 : 11\qquad
\textbf{(C) } 1 : 2\qquad
\textbf{(D) }2 : 3\qquad
\textbf{(E) }25 : 33$
2000 National Olympiad First Round, 33
Let $K$ be a point on the side $[AB]$, and $L$ be a point on the side $[BC]$ of the square $ABCD$. If $|AK|=3$, $|KB|=2$, and the distance of $K$ to the line $DL$ is $3$, what is $|BL|:|LC|$?
$ \textbf{(A)}\ \frac78
\qquad\textbf{(B)}\ \frac{\sqrt 3}2
\qquad\textbf{(C)}\ \frac 87
\qquad\textbf{(D)}\ \frac 38
\qquad\textbf{(E)}\ \frac{\sqrt 2}2
$
2009 Stanford Mathematics Tournament, 3
Given a regular pentagon, find the ratio of its diagonal, $d$, to its side, $a$
1993 Baltic Way, 18
In the triangle $ABC$, $|AB|=15,|BC|=12,|AC|=13$. Let the median $AM$ and bisector $BK$ intersect at point $O$, where $M\in BC,K\in AC$. Let $OL\perp AB,L\in AB$. Prove that $\angle OLK=\angle OLM$.
2022 AMC 12/AHSME, 10
Regular hexagon $ABCDEF$ has side length $2$. Let $G$ be the midpoint of $\overline{AB}$, and let $H$ be the midpoint of $\overline{DE}$. What is the perimeter of $GCHF$?
$ \textbf{(A)}\ 4\sqrt3 \qquad
\textbf{(B)}\ 8 \qquad
\textbf{(C)}\ 4\sqrt5 \qquad
\textbf{(D)}\ 4\sqrt7 \qquad
\textbf{(E)}\ 12$
1989 AMC 12/AHSME, 13
Two strips of width 1 overlap at an angle of $\alpha$ as shown. The area of the overlap (shown shaded) is
[asy]
pair a = (0,0),b= (6,0),c=(0,1),d=(6,1);
transform t = rotate(-45,(3,.5));
pair e = t*a,f=t*b,g=t*c,h=t*d;
pair i = intersectionpoint(a--b,e--f),j=intersectionpoint(a--b,g--h),k=intersectionpoint(c--d,e--f),l=intersectionpoint(c--d,g--h);
draw(a--b^^c--d^^e--f^^g--h);
filldraw(i--j--l--k--cycle,blue);
label("$\alpha$",i+(-.5,.2));
//commented out labeling because it doesn't look right.
//path lbl1 = (a+(.5,.2))--(c+(.5,-.2));
//draw(lbl1);
//label("$1$",lbl1);[/asy]
$\text{(A)} \ \sin \alpha \qquad \text{(B)} \ \frac{1}{\sin \alpha} \qquad \text{(C)} \ \frac{1}{1 - \cos \alpha} \qquad \text{(D)} \ \frac{1}{\sin^2 \alpha} \qquad \text{(E)} \ \frac{1}{(1 - \cos \alpha)^2}$
2008 AMC 12/AHSME, 9
Points $ A$ and $ B$ are on a circle of radius $ 5$ and $ AB\equal{}6$. Point $ C$ is the midpoint of the minor arc $ AB$. What is the length of the line segment $ AC$?
$ \textbf{(A)}\ \sqrt{10} \qquad
\textbf{(B)}\ \frac{7}{2} \qquad
\textbf{(C)}\ \sqrt{14} \qquad
\textbf{(D)}\ \sqrt{15} \qquad
\textbf{(E)}\ 4$
2004 India IMO Training Camp, 3
Determine all functionf $f : \mathbb{R} \mapsto \mathbb{R}$ such that
\[ f(x+y) = f(x)f(y) - c \sin{x} \sin{y} \] for all reals $x,y$ where $c> 1$ is a given constant.
2008 Grigore Moisil Intercounty, 1
Find all monotonic functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ with the property that
$$ (f(\sin x))^2-3f(x)=-2, $$
for any real numbers $ x. $
[i]Dorin Andrica[/i] and [i]Mihai Piticari[/i]
2012 Today's Calculation Of Integral, 842
Let $S_n=\int_0^{\pi} \sin ^ n x\ dx\ (n=1,\ 2,\ ,\ \cdots).$ Find $\lim_{n\to\infty} nS_nS_{n+1}.$
1972 Canada National Olympiad, 1
Given three distinct unit circles, each of which is tangent to the other two, find the radii of the circles which are tangent to all three circles.
1991 USAMO, 1
In triangle $\, ABC, \,$ angle $\,A\,$ is twice angle $\,B,\,$ angle $\,C\,$ is obtuse, and the three side lengths $\,a,b,c\,$ are integers. Determine, with proof, the minimum possible perimeter.
2008 CentroAmerican, 6
Let $ ABC$ be an acute triangle. Take points $ P$ and $ Q$ inside $ AB$ and $ AC$, respectively, such that $ BPQC$ is cyclic. The circumcircle of $ ABQ$ intersects $ BC$ again in $ S$ and the circumcircle of $ APC$ intersects $ BC$ again in $ R$, $ PR$ and $ QS$ intersect again in $ L$. Prove that the intersection of $ AL$ and $ BC$ does not depend on the selection of $ P$ and $ Q$.
2013 Finnish National High School Mathematics Competition, 3
The points $A,B,$ and $C$ lies on the circumference of the unit circle. Furthermore, it is known that $AB$ is a diameter of the circle and \[\frac{|AC|}{|CB|}=\frac{3}{4}.\] The bisector of $ABC$ intersects the circumference at the point $D$. Determine the length of the $AD$.
1981 Austrian-Polish Competition, 3
Given is a triangle $ABC$, the inscribed circle $G$ of which has radius $r$. Let $r_a$ be the radius of the circle touching $AB$, $AC$ and $G$. [This circle lies inside triangle $ABC$.] Define $r_b$ and $r_c$ similarly. Prove that $r_a + r_b + r_c \geq r$ and find all cases in which equality occurs.
[i]Bosnia - Herzegovina Mathematical Olympiad 2002[/i]
2011 Math Prize For Girls Problems, 11
The sequence $a_0$, $a_1$, $a_2$, $\ldots\,$ satisfies the recurrence equation
\[
a_n = 2 a_{n-1} - 2 a_{n - 2} + a_{n - 3}
\]
for every integer $n \ge 3$. If $a_{20} = 1$, $a_{25} = 10$, and $a_{30} = 100$, what is the value of $a_{1331}$?
2013 Sharygin Geometry Olympiad, 3
Let $ABC$ be a right-angled triangle ($\angle B = 90^\circ$). The excircle inscribed into the angle $A$ touches the extensions of the sides $AB$, $AC$ at points $A_1, A_2$ respectively; points $C_1, C_2$ are defined similarly. Prove that the perpendiculars from $A, B, C$ to $C_1C_2, A_1C_1, A_1A_2$ respectively, concur.
1990 IMO Longlists, 30
Chords $ AB$ and $ CD$ of a circle intersect at a point $ E$ inside the circle. Let $ M$ be an interior point of the segment $ EB$. The tangent line at $ E$ to the circle through $ D$, $ E$, and $ M$ intersects the lines $ BC$ and $ AC$ at $ F$ and $ G$, respectively. If
\[ \frac {AM}{AB} \equal{} t,
\]
find $\frac {EG}{EF}$ in terms of $ t$.
1964 Poland - Second Round, 1
Prove that if $ n $ is a natural number and the angle $ \alpha $ is not a multiple of $ \frac{180^{\circ}}{2^n} $, then
$$\frac{1}{\sin 2\alpha} + \frac{1}{\sin 4\alpha} + \frac{1}{\sin 8\alpha} + ... + = ctg \alpha - ctg 2^n \alpha.$$
2004 South East Mathematical Olympiad, 6
ABC is an isosceles triangle with AB=AC. Point D lies on side BC. Point F is inside $\triangle$ABC and lies on the circumcircle of triangle ADC. The circumcircle of triangle BDF intersects side AB at point E. Prove that $CD\cdot EF+DF\cdot AE=BD\cdot AF$.
2017 Kosovo National Mathematical Olympiad, 4
Prove that :
$\cos36-\sin18=\frac{1}{2}$
2012 Serbia National Math Olympiad, 1
Let $ABCD$ be a parallelogram and $P$ be a point on diagonal $BD$ such that $\angle PCB=\angle ACD$. Circumcircle of triangle $ABD$ intersects line $AC$ at points $A$ and $E$. Prove that \[\angle AED=\angle PEB.\]
2016 SDMO (High School), 4
Let triangle $ABC$ be an isosceles triangle with $AB = AC$. Suppose that the angle bisector of its angle $\angle B$ meets the side $AC$ at a point $D$ and that $BC = BD+AD$.
Determine $\angle A$.
1996 Romania National Olympiad, 3
Let $AB CD$ be a rectangle with $AB=1$. If $m ( \angle BDC) = 82^o30'$, compute the length of$ BD$ and the cosine of $82^o30'$.
Today's calculation of integrals, 875
Evaluate $\int_0^1 \frac{x^2+x+1}{x^4+x^3+x^2+x+1}\ dx.$