This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2000 AIME Problems, 14

In triangle $ABC,$ it is given that angles $B$ and $C$ are congruent. Points $P$ and $Q$ lie on $\overline{AC}$ and $\overline{AB},$ respectively, so that $AP=PQ=QB=BC.$ Angle $ACB$ is $r$ times as large as angle $APQ,$ where $r$ is a positive real number. Find the greatest integer that does not exceed $1000r.$

PEN G Problems, 12

An integer-sided triangle has angles $ p\theta$ and $ q\theta$, where $ p$ and $ q$ are relatively prime integers. Prove that $ \cos\theta$ is irrational.

Today's calculation of integrals, 887

For the function $f(x)=\int_0^x \frac{dt}{1+t^2}$, answer the questions as follows. Note : Please solve the problems without using directly the formula $\int \frac{1}{1+x^2}\ dx=\tan^{-1}x +C$ for Japanese High School students those who don't study arc sin x, arc cos x, arc tanx. (1) Find $f(\sqrt{3})$ (2) Find $\int_0^{\sqrt{3}} xf(x)\ dx$ (3) Prove that for $x>0$. $f(x)+f\left(\frac{1}{x}\right)$ is constant, then find the value.

2005 APMO, 5

In a triangle $ABC$, points $M$ and $N$ are on sides $AB$ and $AC$, respectively, such that $MB = BC = CN$. Let $R$ and $r$ denote the circumradius and the inradius of the triangle $ABC$, respectively. Express the ratio $MN/BC$ in terms of $R$ and $r$.

1985 AIME Problems, 9

In a circle, parallel chords of lengths 2, 3, and 4 determine central angles of $\alpha$, $\beta$, and $\alpha + \beta$ radians, respectively, where $\alpha + \beta < \pi$. If $\cos \alpha$, which is a positive rational number, is expressed as a fraction in lowest terms, what is the sum of its numerator and denominator?

Today's calculation of integrals, 888

In the coordinate plane, given a circle $K: x^2+y^2=1,\ C: y=x^2-2$. Let $l$ be the tangent line of $K$ at $P(\cos \theta,\ \sin \theta)\ (\pi<\theta <2\pi).$ Find the minimum area of the part enclosed by $l$ and $C$.

2014 China National Olympiad, 1

Let $ABC$ be a triangle with $AB>AC$. Let $D$ be the foot of the internal angle bisector of $A$. Points $F$ and $E$ are on $AC,AB$ respectively such that $B,C,F,E$ are concyclic. Prove that the circumcentre of $DEF$ is the incentre of $ABC$ if and only if $BE+CF=BC$.

2004 India IMO Training Camp, 1

Let $ABC$ be an acute-angled triangle and $\Gamma$ be a circle with $AB$ as diameter intersecting $BC$ and $CA$ at $F ( \not= B)$ and $E (\not= A)$ respectively. Tangents are drawn at $E$ and $F$ to $\Gamma$ intersect at $P$. Show that the ratio of the circumcentre of triangle $ABC$ to that if $EFP$ is a rational number.

2005 Georgia Team Selection Test, 5

Let $ ABCD$ be a convex quadrilateral. Points $ P,Q$ and $ R$ are the feets of the perpendiculars from point $ D$ to lines $ BC, CA$ and $ AB$, respectively. Prove that $ PQ\equal{}QR$ if and only if the bisectors of the angles $ ABC$ and $ ADC$ meet on segment $ AC$.

2010 Contests, 2

Calculate the sum of the series $\sum_{-\infty}^{\infty}\frac{\sin^33^k}{3^k}$.

1987 IMO Longlists, 59

It is given that $a_{11}, a_{22}$ are real numbers, that $x_1, x_2, a_{12}, b_1, b_2$ are complex numbers, and that $a_{11}a_{22}=a_{12}\overline{a_{12}}$ (Where $\overline{a_{12}}$ is he conjugate of $a_{12}$). We consider the following system in $x_1, x_2$: \[\overline{x_1}(a_{11}x_1 + a_{12}x_2) = b_1,\]\[\overline{x_2}(a_{12}x_1 + a_{22}x_2) = b_2.\] [b](a) [/b]Give one condition to make the system consistent. [b](b) [/b]Give one condition to make $\arg x_1 - \arg x_2 = 98^{\circ}.$

1992 India National Olympiad, 1

In a triangle $ABC$, $\angle A = 2 \cdot \angle B$. Prove that $a^2 = b (b+c)$.

2006 Putnam, A5

Let $n$ be a positive odd integer and let $\theta$ be a real number such that $\theta/\pi$ is irrational. Set $a_{k}=\tan(\theta+k\pi/n),\ k=1,2\dots,n.$ Prove that \[\frac{a_{1}+a_{2}+\cdots+a_{n}}{a_{1}a_{2}\cdots a_{n}}\] is an integer, and determine its value.

1969 Canada National Olympiad, 9

Tags: trigonometry
Show that for any quadrilateral inscribed in a circle of radius 1, the length of the shortest side is less than or equal to $\sqrt{2}$.

1999 AMC 12/AHSME, 18

How many zeros does $ f(x) \equal{} \cos(\log(x)))$ have on the interval $ 0 < x < 1$? $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ \text{infinitely many}$

2007 Baltic Way, 11

In triangle $ABC$ let $AD,BE$ and $CF$ be the altitudes. Let the points $P,Q,R$ and $S$ fulfil the following requirements: i) $P$ is the circumcentre of triangle $ABC$. ii) All the segments $PQ,QR$ and $RS$ are equal to the circumradius of triangle $ABC$. iii) The oriented segment $PQ$ has the same direction as the oriented segment $AD$. Similarly, $QR$ has the same direction as $BE$, and $Rs$ has the same direction as $CF$. Prove that $S$ is the incentre of triangle $ABC$.

2010 Serbia National Math Olympiad, 1

Let $O$ be the circumcenter of triangle $ABC$. A line through $O$ intersects the sides $CA$ and $CB$ at points $D$ and $E$ respectively, and meets the circumcircle of $ABO$ again at point $P \neq O$ inside the triangle. A point $Q$ on side $AB$ is such that $\frac{AQ}{QB}=\frac{DP}{PE}$. Prove that $\angle APQ = 2\angle CAP$. [i]Proposed by Dusan Djukic[/i]

2014 India IMO Training Camp, 1

In a triangle $ABC$, let $I$ be its incenter; $Q$ the point at which the incircle touches the line $AC$; $E$ the midpoint of $AC$ and $K$ the orthocenter of triangle $BIC$. Prove that the line $KQ$ is perpendicular to the line $IE$.

1997 IMC, 3

Show that $\sum^{\infty}_{n=1}\frac{(-1)^{n-1}\sin(\log n)}{n^\alpha}$ converges iff $\alpha>0$.

1998 Hungary-Israel Binational, 2

A triangle ABC is inscribed in a circle with center $ O$ and radius $ R$. If the inradii of the triangles $ OBC, OCA, OAB$ are $ r_{1}, r_{2}, r_{3}$ , respectively, prove that $ \frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}\geq\frac{4\sqrt{3}+6}{R}.$

2007 F = Ma, 19

A non-Hookian spring has force $F = -kx^2$ where $k$ is the spring constant and $x$ is the displacement from its unstretched position. For the system shown of a mass $m$ connected to an unstretched spring initially at rest, how far does the spring extend before the system momentarily comes to rest? Assume that all surfaces are frictionless and that the pulley is frictionless as well. [asy] size(250); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); draw((0,0)--(0,-1)--(2,-1)--(2+sqrt(3),-2)); draw((2.5,-2)--(4.5,-2),dashed); draw(circle((2.2,-0.8),0.2)); draw((2.2,-0.8)--(1.8,-1.2)); draw((0,-0.6)--(0.6,-0.6)--(0.75,-0.4)--(0.9,-0.8)--(1.05,-0.4)--(1.2,-0.8)--(1.35,-0.4)--(1.5,-0.8)--(1.65,-0.4)--(1.8,-0.8)--(1.95,-0.6)--(2.2,-0.6)); draw((2+0.3*sqrt(3),-1.3)--(2+0.3*sqrt(3)+0.6/2,-1.3+sqrt(3)*0.6/2)--(2+0.3*sqrt(3)+0.6/2+0.2*sqrt(3),-1.3+sqrt(3)*0.6/2-0.2)--(2+0.3*sqrt(3)+0.2*sqrt(3),-1.3-0.2)); //super complex Asymptote code gg draw((2+0.3*sqrt(3)+0.3/2,-1.3+sqrt(3)*0.3/2)--(2.35,-0.6677)); draw(anglemark((2,-1),(2+sqrt(3),-2),(2.5,-2))); label("$30^\circ$",(3.5,-2),NW); [/asy] $ \textbf{(A)}\ \left(\frac{3mg}{2k}\right)^{1/2} $ $ \textbf{(B)}\ \left(\frac{mg}{k}\right)^{1/2} $ $ \textbf{(C)}\ \left(\frac{2mg}{k}\right)^{1/2} $ $ \textbf{(D)}\ \left(\frac{\sqrt{3}mg}{k}\right)^{1/3} $ $ \textbf{(E)}\ \left(\frac{3\sqrt{3}mg}{2k}\right)^{1/3} $

2002 China Team Selection Test, 2

$ A_1$, $ B_1$ and $ C_1$ are the projections of the vertices $ A$, $ B$ and $ C$ of triangle $ ABC$ on the respective sides. If $ AB \equal{} c$, $ AC \equal{} b$, $ BC \equal{} a$ and $ AC_1 \equal{} 2t AB$, $ BA_1 \equal{} 2rBC$, $ CB_1 \equal{} 2 \mu AC$. Prove that: \[ \frac {a^2}{b^2} \cdot \left( \frac {t}{1 \minus{} 2t} \right)^2 \plus{} \frac {b^2}{c^2} \cdot \left( \frac {r}{1 \minus{} 2r} \right)^2 \plus{} \frac {c^2}{a^2} \cdot \left( \frac {\mu}{1 \minus{} 2\mu} \right)^2 \plus{} 16tr \mu \geq 1 \]

2003 Tuymaada Olympiad, 2

In a quadrilateral $ABCD$ sides $AB$ and $CD$ are equal, $\angle A=150^\circ,$ $\angle B=44^\circ,$ $\angle C=72^\circ.$ Perpendicular bisector of the segment $AD$ meets the side $BC$ at point $P.$ Find $\angle APD.$ [i]Proposed by F. Bakharev[/i]

1972 IMO Longlists, 6

Prove the inequality \[(n + 1)\cos\frac{\pi}{n + 1}- n\cos\frac{\pi}{n}> 1\] for all natural numbers $n \ge 2.$

2008 India Regional Mathematical Olympiad, 1

Let $ ABC$ be an acute angled triangle; let $ D,F$ be the midpoints of $ BC,AB$ respectively. Let the perpendicular from $ F$ to $ AC$ and the perpendicular from $ B$ ti $ BC$ meet in $ N$: Prove that $ ND$ is the circumradius of $ ABC$. [15 points out of 100 for the 6 problems]