This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2019 Jozsef Wildt International Math Competition, W. 46

Let $x$, $y$, $z > 0$ such that $x^2 + y^2 + z^2 = 3$. Then $$x^3\tan^{-1}\frac{1}{x}+y^3\tan^{-1}\frac{1}{y}+z^3\tan^{-1}\frac{1}{z}<\frac{\pi \sqrt{3}}{2}$$

2007 Today's Calculation Of Integral, 226

Evaluate $ \int_0^{\frac {\pi}{2}} \frac {x^2}{(\cos x \plus{} x\sin x)^2}\ dx$ [color=darkblue]Virgil Nicula have already posted the integral[/color] :oops:

2008 Moldova National Olympiad, 9.3

From the vertex $ A$ of the equilateral triangle $ ABC$ a line is drown that intercepts the segment $ [BC]$ in the point $ E$. The point $ M \in (AE$ is such that $ M$ external to $ ABC$, $ \angle AMB \equal{} 20 ^\circ$ and $ \angle AMC \equal{} 30 ^ \circ$. What is the measure of the angle $ \angle MAB$?

2013 Stanford Mathematics Tournament, 10

Evaluate $\lim_{n\to\infty}\left[\left(\prod_{k=1}^{n}\frac{2k}{2k-1}\right)\int_{-1}^{\infty}\frac{(\cos x)^{2n}}{2^x} \, dx\right]$.

2013 Princeton University Math Competition, 5

Circle $w$ with center $O$ meets circle $\Gamma$ at $X,Y,$ and $O$ is on $\Gamma$. Point $Z\in\Gamma$ lies outside $w$ such that $XZ=11$, $OZ=15$, and $YZ=13$. If the radius of circle $w$ is $r$, find $r^2$.

2011 AMC 12/AHSME, 20

Triangle $ABC$ has $AB=13$, $BC=14$, and $AC=15$. The points $D, E,$ and $F$ are the midpoints of $\overline{AB}$, $\overline{BC}$, and $\overline{AC}$ respectively. Let $ X \ne E$ be the intersection of the circumcircles of $\triangle BDE$ and $\triangle CEF$. What is $XA+XB+XC$? $ \textbf{(A)}\ 24 \qquad \textbf{(B)}\ 14\sqrt{3} \qquad \textbf{(C)}\ \frac{195}{8} \qquad \textbf{(D)}\ \frac{129\sqrt{7}}{14} \qquad \textbf{(E)}\ \frac{69\sqrt{2}}{4} $

1996 Balkan MO, 3

In a convex pentagon $ABCDE$, the points $M$, $N$, $P$, $Q$, $R$ are the midpoints of the sides $AB$, $BC$, $CD$, $DE$, $EA$, respectively. If the segments $AP$, $BQ$, $CR$ and $DM$ pass through a single point, prove that $EN$ contains that point as well. [i]Yugoslavia[/i]

2010 Polish MO Finals, 3

$ABCD$ is a parallelogram in which angle $DAB$ is acute. Points $A, P, B, D$ lie on one circle in exactly this order. Lines $AP$ and $CD$ intersect in $Q$. Point $O$ is the circumcenter of the triangle $CPQ$. Prove that if $D \neq O$ then the lines $AD$ and $DO$ are perpendicular.

2011 Putnam, A3

Find a real number $c$ and a positive number $L$ for which \[\lim_{r\to\infty}\frac{r^c\int_0^{\pi/2}x^r\sin x\,dx}{\int_0^{\pi/2}x^r\cos x\,dx}=L.\]

1983 IMO Longlists, 68

Three of the roots of the equation $x^4 -px^3 +qx^2 -rx+s = 0$ are $\tan A, \tan B$, and $\tan C$, where $A, B$, and $C$ are angles of a triangle. Determine the fourth root as a function only of $p, q, r$, and $s.$

2002 Greece National Olympiad, 3

In a triangle $ABC$ we have $\angle C>10^0$ and $\angle B=\angle C+10^0.$We consider point $E$ on side $AB$ such that $\angle ACE=10^0,$ and point $D$ on side $AC$ such that $\angle DBA=15^0.$ Let $Z\neq A$ be a point of interection of the circumcircles of the triangles $ABD$ and $AEC.$Prove that $\angle ZBA>\angle ZCA.$

II Soros Olympiad 1995 - 96 (Russia), 11.3

Solve the system of equations $$\begin{cases} \sin \frac{\pi}{2}xy =z \\ \sin \frac{\pi}{2}yz =x \\ \sin \frac{\pi}{2}zx =y \end{cases} \,\,\, ?$$

II Soros Olympiad 1995 - 96 (Russia), 11.2

Solve the equation $$arc \sin (\sin x) + arc \cos (\cos x)=0$$

1993 IMO Shortlist, 4

Given a triangle $ABC$, let $D$ and $E$ be points on the side $BC$ such that $\angle BAD = \angle CAE$. If $M$ and $N$ are, respectively, the points of tangency of the incircles of the triangles $ABD$ and $ACE$ with the line $BC$, then show that \[\frac{1}{MB}+\frac{1}{MD}= \frac{1}{NC}+\frac{1}{NE}. \]

2010 ELMO Shortlist, 4

Let $-2 < x_1 < 2$ be a real number and define $x_2, x_3, \ldots$ by $x_{n+1} = x_n^2-2$ for $n \geq 1$. Assume that no $x_n$ is $0$ and define a number $A$, $0 \leq A \leq 1$ in the following way: The $n^{\text{th}}$ digit after the decimal point in the binary representation of $A$ is a $0$ if $x_1x_2\cdots x_n$ is positive and $1$ otherwise. Prove that $A = \frac{1}{\pi}\cos^{-1}\left(\frac{x_1}{2}\right)$. [i]Evan O' Dorney.[/i]

2006 China National Olympiad, 4

In a right angled-triangle $ABC$, $\angle{ACB} = 90^o$. Its incircle $O$ meets $BC$, $AC$, $AB$ at $D$,$E$,$F$ respectively. $AD$ cuts $O$ at $P$. If $\angle{BPC} = 90^o$, prove $AE + AP = PD$.

2012 ELMO Shortlist, 1

Let $x_1,x_2,x_3,y_1,y_2,y_3$ be nonzero real numbers satisfying $x_1+x_2+x_3=0, y_1+y_2+y_3=0$. Prove that \[\frac{x_1x_2+y_1y_2}{\sqrt{(x_1^2+y_1^2)(x_2^2+y_2^2)}}+\frac{x_2x_3+y_2y_3}{\sqrt{(x_2^2+y_2^2)(x_3^2+y_3^2)}}+\frac{x_3x_1+y_3y_1}{\sqrt{(x_3^2+y_3^2)(x_1^2+y_1^2)}} \ge -\frac32.\] [i]Ray Li, Max Schindler.[/i]

2004 Estonia Team Selection Test, 4

Denote $f(m) =\sum_{k=1}^m (-1)^k cos \frac{k\pi}{2 m + 1}$ For which positive integers $m$ is $f(m)$ rational?

2019 Moldova Team Selection Test, 2

Prove that $E_n=\frac{\arccos {\frac{n-1}{n}} } {\text{arccot} {\sqrt{2n-1} }}$ is a natural number for any natural number $n$. (A natural number is a positive integer)

1969 IMO Longlists, 10

$(BUL 4)$ Let $M$ be the point inside the right-angled triangle $ABC (\angle C = 90^{\circ})$ such that $\angle MAB = \angle MBC = \angle MCA =\phi.$ Let $\Psi$ be the acute angle between the medians of $AC$ and $BC.$ Prove that $\frac{\sin(\phi+\Psi)}{\sin(\phi-\Psi)}= 5.$

2007 Today's Calculation Of Integral, 200

Evaluate the following definite integral. \[\int_{0}^{\pi}\frac{\cos nx}{2-\cos x}dx\ (n=0,\ 1,\ 2,\ \cdots)\]

1947 Putnam, B1

Let $f(x)$ be a function such that $f(1)=1$ and for $x \geq 1$ $$f'(x)= \frac{1}{x^2 +f(x)^{2}}.$$ Prove that $$\lim_{x\to \infty} f(x)$$ exists and is less than $1+ \frac{\pi}{4}.$

2006 China Western Mathematical Olympiad, 3

In $\triangle PBC$, $\angle PBC=60^{o}$, the tangent at point $P$ to the circumcircle$g$ of $\triangle PBC$ intersects with line $CB$ at $A$. Points $D$ and $E$ lie on the line segment $PA$ and $g$ respectively, satisfying $\angle DBE=90^{o}$, $PD=PE$. $BE$ and $PC$ meet at $F$. It is known that lines $AF,BP,CD$ are concurrent. a) Prove that $BF$ bisect $\angle PBC$ b) Find $\tan \angle PCB$

2005 ISI B.Stat Entrance Exam, 1

Let $a,b$ and $c$ be the sides of a right angled triangle. Let $\theta$ be the smallest angle of this triangle. If $\frac{1}{a}, \frac{1}{b}$ and $\frac{1}{c}$ are also the sides of a right angled triangle then show that $\sin\theta=\frac{\sqrt{5}-1}{2}$

2003 AIME Problems, 10

Triangle $ABC$ is isosceles with $AC = BC$ and $\angle ACB = 106^\circ$. Point $M$ is in the interior of the triangle so that $\angle MAC = 7^\circ$ and $\angle MCA = 23^\circ$. Find the number of degrees in $\angle CMB$.