This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2008 China Northern MO, 6

Let $a, b, c$ be side lengths of a right triangle and $c$ be the length of the hypotenuse .Find the minimum value of $\frac{a^3+b^3+c^3}{abc}$.

2003 Turkey Junior National Olympiad, 1

Let $ABCD$ be a cyclic quadrilateral, and $E$ be the intersection of its diagonals. If $m(\widehat{ADB}) = 22.5^\circ$, $|BD|=6$, and $|AD|\cdot|CE|=|DC|\cdot|AE|$, find the area of the quadrilateral $ABCD$.

1991 Denmark MO - Mohr Contest, 2

Tags: trigonometry
Prove that for $0<x<\frac{\pi}{2}$, $$\sin x + \tan x > 2x$$

2006 National Olympiad First Round, 17

Let $D$ be a point on the side $[BC]$ of $\triangle ABC$ such that $|BD|=2$ and $|DC|=6$. If $|AB|=4$ and $m(\widehat{ACB})=20^\circ$, then what is $m(\widehat {BAD})$? $ \textbf{(A)}\ 10^\circ \qquad\textbf{(B)}\ 18^\circ \qquad\textbf{(C)}\ 20^\circ \qquad\textbf{(D)}\ 22^\circ \qquad\textbf{(E)}\ 25^\circ $

2008 Putnam, B3

What is the largest possible radius of a circle contained in a 4-dimensional hypercube of side length 1?

2009 Iran Team Selection Test, 9

In triangle $ABC$, $D$, $E$ and $F$ are the points of tangency of incircle with the center of $I$ to $BC$, $CA$ and $AB$ respectively. Let $M$ be the foot of the perpendicular from $D$ to $EF$. $P$ is on $DM$ such that $DP = MP$. If $H$ is the orthocenter of $BIC$, prove that $PH$ bisects $ EF$.

2014 Turkey Team Selection Test, 1

Let $P$ be a point inside the acute triangle $ABC$ with $m(\widehat{PAC})=m(\widehat{PCB})$. $D$ is the midpoint of the segment $PC$. $AP$ and $BC$ intersect at $E$, and $BP$ and $DE$ intersect at $Q$. Prove that $\sin\widehat{BCQ}=\sin\widehat{BAP}$.

2016 Bangladesh Mathematical Olympiad, 8

Triangle $ABC$ is inscribed in circle $\omega$ with $AB = 5$, $BC = 7$, and $AC = 3$. The bisector of angle $A$ meets side $BC$ at $D$ and circle $\omega$ at a second point $E$. Let $\gamma$ be the circle with diameter $DE$. Circles $\omega$ and $\gamma$ meet at $E$ and a second point $F$. Then $AF^2 = \frac mn$, where m and n are relatively prime positive integers. Find $m + n$.

2009 Stanford Mathematics Tournament, 7

An isosceles trapezoid has legs and shorter base of length $1$. Find the maximum possible value of its area

2014 AIME Problems, 11

In $\triangle RED, RD =1, \angle DRE = 75^\circ$ and $\angle RED = 45^\circ$. Let $M$ be the midpoint of segment $\overline{RD}$. Point $C$ lies on side $\overline{ED}$ such that $\overline{RC} \perp \overline{EM}$. Extend segment $\overline{DE}$ through $E$ to point $A$ such that $CA = AR$. Then $AE = \tfrac{a-\sqrt{b}}{c},$ where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer. Find $a+b+c$.

2009 Today's Calculation Of Integral, 479

Let $ a,\ b$ be real constants. Find the minimum value of the definite integral: $ I(a,\ b)\equal{}\int_0^{\pi} (1\minus{}a\sin x \minus{}b\sin 2x)^2 dx.$

1995 AMC 12/AHSME, 23

The sides of a triangle have lengths $11$,$15$, and $k$, where $k$ is an integer. For how many values of $k$ is the triangle obtuse? $\textbf{(A)}\ 5 \qquad \textbf{(B)}\ 7 \qquad \textbf{(C)}\ 12 \qquad \textbf{(D)}\ 13 \qquad \textbf{(E)}\ 14$

2013 Serbia National Math Olympiad, 3

Let $M$, $N$ and $P$ be midpoints of sides $BC, AC$ and $AB$, respectively, and let $O$ be circumcenter of acute-angled triangle $ABC$. Circumcircles of triangles $BOC$ and $MNP$ intersect at two different points $X$ and $Y$ inside of triangle $ABC$. Prove that \[\angle BAX=\angle CAY.\]

1983 IMO Longlists, 59

Solve the equation \[\tan^2(2x) + 2 \tan(2x) \cdot \tan(3x) -1 = 0.\]

2025 Bulgarian Spring Mathematical Competition, 11.2

Let $\alpha, \beta$ be real numbers such that $\sin\alpha\sin\beta=\frac{1}{3}$. Prove that the set of possible values of $\cos \alpha \cos \beta$ is the interval $\left[-\frac{2}{3}, \frac{2}{3}\right]$.

2010 Today's Calculation Of Integral, 628

(1) Evaluate the following definite integrals. (a) $\int_0^{\frac{\pi}{2}} \cos ^ 2 x\sin x\ dx$ (b) $\int_0^{\frac{\pi}{2}} (\pi - 2x)\cos x\ dx$ (c) $\int_0^{\frac{\pi}{2}} x\cos ^ 3 x\ dx$ (2) Let $a$ be a positive constant. Find the area of the cross section cut by the plane $z=\sin \theta \ \left(0\leq \theta \leq \frac{\pi}{2}\right)$ of the solid such that \[x^2+y^2+z^2\leq a^2,\ \ x^2+y^2\leq ax,\ \ z\geq 0\] , then find the volume of the solid. [i]1984 Yamanashi Medical University entrance exam[/i] Please slove the problem without multi integral or arcsine function for Japanese high school students aged 17-18 those who don't study them. Thanks in advance. kunny

2010 Slovenia National Olympiad, 2

Find all real $x$ in the interval $[0, 2\pi)$ such that \[27 \cdot 3^{3 \sin x} = 9^{\cos^2 x}.\]

2006 Bulgaria National Olympiad, 3

Consider a point $O$ in the plane. Find all sets $S$ of at least two points in the plane such that if $A\in S$ ad $A\neq O$, then the circle with diameter $OA$ is in $S$. [i]Nikolai Nikolov, Slavomir Dinev[/i]

2013 AMC 10, 23

In $ \bigtriangleup ABC $, $ AB = 86 $, and $ AC = 97 $. A circle with center $ A $ and radius $ AB $ intersects $ \overline{BC} $ at points $ B $ and $ X $. Moreover $ \overline{BX} $ and $ \overline{CX} $ have integer lengths. What is $ BC $? $ \textbf{(A)} \ 11 \qquad \textbf{(B)} \ 28 \qquad \textbf{(C)} \ 33 \qquad \textbf{(D)} \ 61 \qquad \textbf{(E)} \ 72 $

1969 IMO Shortlist, 10

$(BUL 4)$ Let $M$ be the point inside the right-angled triangle $ABC (\angle C = 90^{\circ})$ such that $\angle MAB = \angle MBC = \angle MCA =\phi.$ Let $\Psi$ be the acute angle between the medians of $AC$ and $BC.$ Prove that $\frac{\sin(\phi+\Psi)}{\sin(\phi-\Psi)}= 5.$

2014 Harvard-MIT Mathematics Tournament, 8

Let $ABC$ be a triangle with sides $AB = 6$, $BC = 10$, and $CA = 8$. Let $M$ and $N$ be the midpoints of $BA$ and $BC$, respectively. Choose the point $Y$ on ray $CM$ so that the circumcircle of triangle $AMY$ is tangent to $AN$. Find the area of triangle $NAY$.

2011 ELMO Shortlist, 2

Let $\omega,\omega_1,\omega_2$ be three mutually tangent circles such that $\omega_1,\omega_2$ are externally tangent at $P$, $\omega_1,\omega$ are internally tangent at $A$, and $\omega,\omega_2$ are internally tangent at $B$. Let $O,O_1,O_2$ be the centers of $\omega,\omega_1,\omega_2$, respectively. Given that $X$ is the foot of the perpendicular from $P$ to $AB$, prove that $\angle{O_1XP}=\angle{O_2XP}$. [i]David Yang.[/i]

2012 Sharygin Geometry Olympiad, 8

Let $BM$ be the median of right-angled triangle $ABC (\angle B = 90^{\circ})$. The incircle of triangle $ABM$ touches sides $AB, AM$ in points $A_{1},A_{2}$; points $C_{1}, C_{2}$ are defined similarly. Prove that lines $A_{1}A_{2}$ and $C_{1}C_{2}$ meet on the bisector of angle $ABC$.

2010 Today's Calculation Of Integral, 556

Prove the following inequality. \[ \sqrt[3]{\int_0^{\frac {\pi}{4}} \frac {x}{\cos ^ 2 x\cos ^ 2 (\tan x)\cos ^ 2(\tan (\tan x))\cos ^ 2(\tan (\tan (\tan x)))}dx}<\frac{4}{\pi}\] Last Edited. Sorry, I have changed the problem. kunny

1996 USAMO, 5

Let $ABC$ be a triangle, and $M$ an interior point such that $\angle MAB=10^\circ$, $\angle MBA=20^\circ$, $\angle MAC=40^\circ$ and $\angle MCA=30^\circ$. Prove that the triangle is isosceles.