This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2007 Purple Comet Problems, 23

Two circles with radius $2$ and radius $4$ have a common center at P. Points $A, B,$ and $C$ on the larger circle are the vertices of an equilateral triangle. Point $D$ is the intersection of the smaller circle and the line segment $PB$. Find the square of the area of triangle $ADC$.

2010 Today's Calculation Of Integral, 647

Evaluate \[\int_0^{\pi} xp^x\cos qx\ dx,\ \int_0^{\pi} xp^x\sin qx\ dx\ (p>0,\ p\neq 1,\ q\in{\mathbb{N^{+}}})\] Own

2006 AIME Problems, 6

Square $ABCD$ has sides of length 1. Points $E$ and $F$ are on $\overline{BC}$ and $\overline{CD}$, respectively, so that $\triangle AEF$ is equilateral. A square with vertex $B$ has sides that are parallel to those of $ABCD$ and a vertex on $\overline{AE}$. The length of a side of this smaller square is $\displaystyle \frac{a-\sqrt{b}}{c}$, where $a$, $b$, and $c$ are positive integers and $b$ is not divisible by the square of any prime. Find $a+b+c$.

Today's calculation of integrals, 878

A cubic function $f(x)$ satisfies the equation $\sin 3t=f(\sin t)$ for all real numbers $t$. Evaluate $\int_0^1 f(x)^2\sqrt{1-x^2}\ dx$.

1961 Poland - Second Round, 3

Tags: trigonometry
Prove that for any angles $x,y,z$ holds the equality $$1-\cos^2x-\cos^2y- y-\cos^2z +2 \cos x \cos y \cos z= 4 \sin \frac{x+y+z}{2} \sin \frac{x+y-z}{2} \sin \frac{x-y+z}{2} \sin\frac{-x-y+z}{2}. $$

2008 AMC 12/AHSME, 23

The solutions of the equation $ z^4 \plus{} 4z^3i \minus{} 6z^2 \minus{} 4zi \minus{} i \equal{} 0$ are the vertices of a convex polygon in the complex plane. What is the area of the polygon? $ \textbf{(A)}\ 2^{5/8} \qquad \textbf{(B)}\ 2^{3/4} \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 2^{5/4} \qquad \textbf{(E)}\ 2^{3/2}$

2014 USA TSTST, 2

Consider a convex pentagon circumscribed about a circle. We name the lines that connect vertices of the pentagon with the opposite points of tangency with the circle [i]gergonnians[/i]. (a) Prove that if four gergonnians are conncurrent, the all five of them are concurrent. (b) Prove that if there is a triple of gergonnians that are concurrent, then there is another triple of gergonnians that are concurrent.

2013 Today's Calculation Of Integral, 883

Prove that for each positive integer $n$ \[\frac{4n^2+1}{4n^2-1}\int_0^{\pi} (e^{x}-e^{-x})\cos 2nx\ dx>\frac{e^{\pi}-e^{-\pi}-2}{4}\ln \frac{(2n+1)^2}{(2n-1)(n+3)}.\]

1997 China Team Selection Test, 1

Given a real number $\lambda > 1$, let $P$ be a point on the arc $BAC$ of the circumcircle of $\bigtriangleup ABC$. Extend $BP$ and $CP$ to $U$ and $V$ respectively such that $BU = \lambda BA$, $CV = \lambda CA$. Then extend $UV$ to $Q$ such that $UQ = \lambda UV$. Find the locus of point $Q$.

1967 Vietnam National Olympiad, 2

Tags: trigonometry
A river flows at speed u. A boat has speed v relative to the water. If its velocity is at an angle $\alpha$ relative the direction of the river, what is its speed relative to the river bank? What $\alpha$ minimises the time taken to cross the river?

2007 Hong Kong TST, 3

[url=http://www.mathlinks.ro/Forum/viewtopic.php?t=107262]IMO 2007 HKTST 1[/url] Problem 3 Let $A$, $B$ and $C$ be real numbers such that (i) $\sin A \cos B+|\cos A \sin B|=\sin A |\cos A|+|\sin B|\cos B$, (ii) $\tan C$ and $\cot C$ are defined. Find the minimum value of $(\tan C-\sin A)^{2}+(\cot C-\cos B)^{2}$.

Indonesia MO Shortlist - geometry, g7

In triangle $ABC$, find the smallest possible value of $$|(\cot A + \cot B)(\cot B +\cot C)(\cot C + \cot A)|$$

1985 Iran MO (2nd round), 1

Let $\alpha $ be an angle such that $\cos \alpha = \frac pq$, where $p$ and $q$ are two integers. Prove that the number $q^n \cos n \alpha$ is an integer.

1988 AIME Problems, 7

In triangle $ABC$, $\tan \angle CAB = 22/7$, and the altitude from $A$ divides $BC$ into segments of length 3 and 17. What is the area of triangle $ABC$?

2010 Contests, 3

Let $(x_n)_{n \in \mathbb{N}}$ be the sequence defined as $x_n = \sin(2 \pi n! e)$ for all $n \in \mathbb{N}$. Compute $\lim_{n \to \infty} x_n$.

2010 Contests, 1

Let $f:S\to\mathbb{R}$ be the function from the set of all right triangles into the set of real numbers, defined by $f(\Delta ABC)=\frac{h}{r}$, where $h$ is the height with respect to the hypotenuse and $r$ is the inscribed circle's radius. Find the image, $Im(f)$, of the function.

2009 Vietnam Team Selection Test, 2

Let a circle $ (O)$ with diameter $ AB$. A point $ M$ move inside $ (O)$. Internal bisector of $ \widehat{AMB}$ cut $ (O)$ at $ N$, external bisector of $ \widehat{AMB}$ cut $ NA,NB$ at $ P,Q$. $ AM,BM$ cut circle with diameter $ NQ,NP$ at $ R,S$. Prove that: median from $ N$ of triangle $ NRS$ pass over a fix point.

1979 Brazil National Olympiad, 1

Show that if $a < b$ are in the interval $\left[0, \frac{\pi}{2}\right]$ then $a - \sin a < b - \sin b$. Is this true for $a < b$ in the interval $\left[\pi,\frac{3\pi}{2}\right]$?

1978 IMO Longlists, 38

Given a circle, construct a chord that is trisected by two given noncollinear radii.

2015 China National Olympiad, 1

Let $z_1,z_2,...,z_n$ be complex numbers satisfying $|z_i - 1| \leq r$ for some $r$ in $(0,1)$. Show that \[ \left | \sum_{i=1}^n z_i \right | \cdot \left | \sum_{i=1}^n \frac{1}{z_i} \right | \geq n^2(1-r^2).\]

2015 Mathematical Talent Reward Programme, MCQ: P 10

If $\sum_{i=1}^{n} \cos ^{-1}\left(\alpha_{i}\right)=0,$ then find $\sum_{i=1}^{n} \alpha_{i}$ [list=1] [*] $\frac{n}{2} $ [*] $n $ [*] $n\pi $ [*] $\frac{n\pi}{2} $ [/list]

2010 Today's Calculation Of Integral, 632

Find $\lim_{n\to\infty} \int_0^1 |\sin nx|^3dx\ (n=1,\ 2,\ \cdots).$ [i]2010 Kyoto Institute of Technology entrance exam/Textile, 2nd exam[/i]

2001 Romania National Olympiad, 2

Let $ABC$ be a triangle $(A=90^{\circ})$ and $D\in (AC)$ such that $BD$ is the bisector of $B$. Prove that $BC-BD=2AB$ if and only if \[\frac{1}{BD}-\frac{1}{BC}=\frac{1}{2AB} \]

2006 IberoAmerican Olympiad For University Students, 7

Consider the multiplicative group $A=\{z\in\mathbb{C}|z^{2006^k}=1, 0<k\in\mathbb{Z}\}$ of all the roots of unity of degree $2006^k$ for all positive integers $k$. Find the number of homomorphisms $f:A\to A$ that satisfy $f(f(x))=f(x)$ for all elements $x\in A$.

2011 China Team Selection Test, 1

Let $H$ be the orthocenter of an acute trangle $ABC$ with circumcircle $\Gamma$. Let $P$ be a point on the arc $BC$ (not containing $A$) of $\Gamma$, and let $M$ be a point on the arc $CA$ (not containing $B$) of $\Gamma$ such that $H$ lies on the segment $PM$. Let $K$ be another point on $\Gamma$ such that $KM$ is parallel to the Simson line of $P$ with respect to triangle $ABC$. Let $Q$ be another point on $\Gamma$ such that $PQ \parallel BC$. Segments $BC$ and $KQ$ intersect at a point $J$. Prove that $\triangle KJM$ is an isosceles triangle.