This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2005 Today's Calculation Of Integral, 37

Evaluate \[\int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} \frac{1}{\sin x \sqrt{1-\cos x}}dx\]

2014 PUMaC Team, 4

$ABC$ is a right triangle with $AC=3$, $BC=4$, $AB=5$. Squares are erected externally on the sides of the triangle. Evaluate the area of hexagon $PQRSTU$.

2010 India IMO Training Camp, 10

Let $ABC$ be a triangle. Let $\Omega$ be the brocard point. Prove that $\left(\frac{A\Omega}{BC}\right)^2+\left(\frac{B\Omega}{AC}\right)^2+\left(\frac{C\Omega}{AB}\right)^2\ge 1$

1985 AMC 12/AHSME, 16

Tags: trigonometry
If $ A \equal{} 20^{\circ}$ and $ B \equal{} 25^{\circ}$, then the value of $ (1 \plus{} \tan A)(1 \plus{} \tan B)$ is $ \textbf{(A)} \sqrt3 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 1 \plus{} \sqrt2 \qquad \textbf{(D)}\ 2(\tan A \plus{} \tan B)$ $ \textbf{(E)}\ \text{ none of these}$

Indonesia Regional MO OSP SMA - geometry, 2008.3

Given triangle $ ABC$. The incircle of triangle $ ABC$ is tangent to $ BC,CA,AB$ at $ D,E,F$ respectively. Construct point $ G$ on $ EF$ such that $ DG$ is perpendicular to $ EF$. Prove that $ \frac{FG}{EG} \equal{} \frac{BF}{CE}$.

2014 Singapore Senior Math Olympiad, 26

Suppose that $x$ is measured in radians. Find the maximum value of \[\frac{\sin2x+\sin4x+\sin6x}{\cos2x+\cos4x+\cos6x}\] for $0\le x\le \frac{\pi}{16}$

2009 National Olympiad First Round, 13

In trapezoid $ ABCD$, $ AB \parallel CD$, $ \angle CAB < 90^\circ$, $ AB \equal{} 5$, $ CD \equal{} 3$, $ AC \equal{} 15$. What are the sum of different integer values of possible $ BD$? $\textbf{(A)}\ 101 \qquad\textbf{(B)}\ 108 \qquad\textbf{(C)}\ 115 \qquad\textbf{(D)}\ 125 \qquad\textbf{(E)}\ \text{None}$

2007 Stanford Mathematics Tournament, 4

Tags: trigonometry
Evaluate $ (\tan 10^\circ)(\tan 20^\circ)(\tan 30^\circ)(\tan 40^\circ)(\tan 50^\circ)(\tan 60^\circ)(\tan 70^\circ)(\tan 80^\circ)$.

2013 NIMO Summer Contest, 13

In trapezoid $ABCD$, $AD \parallel BC$ and $\angle ABC + \angle CDA = 270^{\circ}$. Compute $AB^2$ given that $AB \cdot \tan(\angle BCD) = 20$ and $CD = 13$. [i]Proposed by Lewis Chen[/i]

2006 Iran Team Selection Test, 5

Let $ABC$ be an acute angle triangle. Suppose that $D,E,F$ are the feet of perpendicluar lines from $A,B,C$ to $BC,CA,AB$. Let $P,Q,R$ be the feet of perpendicular lines from $A,B,C$ to $EF,FD,DE$. Prove that \[ 2(PQ+QR+RP)\geq DE+EF+FD \]

2006 AMC 12/AHSME, 22

A circle of radius $ r$ is concentric with and outside a regular hexagon of side length 2. The probability that three entire sides of hexagon are visible from a randomly chosen point on the circle is 1/2. What is $ r$? $ \textbf{(A) } 2\sqrt {2} \plus{} 2\sqrt {3} \qquad \textbf{(B) } 3\sqrt {3} \plus{} \sqrt {2} \qquad \textbf{(C) } 2\sqrt {6} \plus{} \sqrt {3} \qquad \textbf{(D) } 3\sqrt {2} \plus{} \sqrt {6}\\ \textbf{(E) } 6\sqrt {2} \minus{} \sqrt {3}$

1975 Canada National Olympiad, 7

A function $ f(x)$ is [i]periodic[/i] if there is a positive number $ p$ such that $ f(x\plus{}p) \equal{} f(x)$ for all $ x$. For example, $ \sin x$ is periodic with period $ 2 \pi$. Is the function $ \sin(x^2)$ periodic? Prove your assertion.

2003 China Team Selection Test, 1

Let $ ABCD$ be a quadrilateral which has an incircle centered at $ O$. Prove that \[ OA\cdot OC\plus{}OB\cdot OD\equal{}\sqrt{AB\cdot BC\cdot CD\cdot DA}\]

2008 AIME Problems, 13

A regular hexagon with center at the origin in the complex plane has opposite pairs of sides one unit apart. One pair of sides is parallel to the imaginary axis. Let $ R$ be the region outside the hexagon, and let $ S\equal{}\{\frac{1}{z}|z\in R\}$. Then the area of $ S$ has the form $ a\pi\plus{}\sqrt{b}$, where $ a$ and $ b$ are positive integers. Find $ a\plus{}b$.

1996 Canada National Olympiad, 4

Let triangle $ABC$ be an isosceles triangle with $AB = AC$. Suppose that the angle bisector of its angle $\angle B$ meets the side $AC$ at a point $D$ and that $BC = BD+AD$. Determine $\angle A$.

1985 IMO Longlists, 37

Prove that a triangle with angles $\alpha, \beta, \gamma$, circumradius $R$, and area $A$ satisfies \[\tan \frac{ \alpha}{2}+\tan \frac{ \beta}{2}+\tan \frac{ \gamma}{2} \leq \frac{9R^2}{4A}.\] [hide="Remark."]Remark. Can we determine [i]all[/i] of equality cases ?[/hide]

2008 Bosnia And Herzegovina - Regional Olympiad, 1

Given is an acute angled triangle $ \triangle ABC$ with side lengths $ a$, $ b$ and $ c$ (in an usual way) and circumcenter $ O$. Angle bisector of angle $ \angle BAC$ intersects circumcircle at points $ A$ and $ A_{1}$. Let $ D$ be projection of point $ A_{1}$ onto line $ AB$, $ L$ and $ M$ be midpoints of $ AC$ and $ AB$ , respectively. (i) Prove that $ AD\equal{}\frac{1}{2}(b\plus{}c)$ (ii) If triangle $ \triangle ABC$ is an acute angled prove that $ A_{1}D\equal{}OM\plus{}OL$

1999 USAMTS Problems, 4

In $\triangle PQR$, $PQ=8$, $QR=13$, and $RP=15$. Prove that there is a point $S$ on line segment $\overline{PR}$, but not at its endpoints, such that $PS$ and $QS$ are also integers. [asy] size(200); defaultpen(linewidth(0.8)); pair P=origin,Q=(8,0),R=(7,10),S=(3/2,15/7); draw(P--Q--R--cycle); label("$P$",P,W); label("$Q$",Q,E); label("$R$",R,NE); draw(Q--S,linetype("4 4")); label("$S$",S,NW); [/asy]

1969 IMO Shortlist, 38

$(HUN 5)$ Let $r$ and $m (r \le m)$ be natural numbers and $Ak =\frac{2k-1}{2m}\pi$. Evaluate $\frac{1}{m^2}\displaystyle\sum_{k=1}^{m}\displaystyle\sum_{l=1}^{m}\sin(rA_k)\sin(rA_l)\cos(rA_k-rA_l)$

2008 South africa National Olympiad, 6

Find all function pairs $(f,g)$ where each $f$ and $g$ is a function defined on the integers and with values, such that, for all integers $a$ and $b$, \[f(a+b)=f(a)g(b)+g(a)f(b)\\ g(a+b)=g(a)g(b)-f(a)f(b).\]

2010 Indonesia TST, 1

Is there a triangle with angles in ratio of $ 1: 2: 4$ and the length of its sides are integers with at least one of them is a prime number? [i]Nanang Susyanto, Jogjakarta[/i]

V Soros Olympiad 1998 - 99 (Russia), 10.2

Solve the equation $$ |\cos 3x - tgt| + |\cos 3x + tgt| = |tg^2t -3|.$$

2012 Postal Coaching, 5

In triangle $ABC$, $\angle BAC = 94^{\circ},\ \angle ACB = 39^{\circ}$. Prove that \[ BC^2 = AC^2 + AC\cdot AB\].

2005 Today's Calculation Of Integral, 57

Find the value of $n\in{\mathbb{N}}$ satisfying the following inequality. \[\left|\int_0^{\pi} x^2\sin nx\ dx\right|<\frac{99\pi ^ 2}{100n}\]

2013 Sharygin Geometry Olympiad, 4

Given a square cardboard of area $\frac{1}{4}$, and a paper triangle of area $\frac{1}{2}$ such that the square of its sidelength is a positive integer. Prove that the triangle can be folded in some ways such that the squace can be placed inside the folded figure so that both of its faces are completely covered with paper. [i]Proposed by N.Beluhov, Bulgaria[/i]