Found problems: 560
2006 China Team Selection Test, 3
Let $a_{i}$ and $b_{i}$ ($i=1,2, \cdots, n$) be rational numbers such that for any real number $x$ there is:
\[x^{2}+x+4=\sum_{i=1}^{n}(a_{i}x+b)^{2}\]
Find the least possible value of $n$.
2004 Iran MO (3rd Round), 27
$ \Delta_1,\ldots,\Delta_n$ are $ n$ concurrent segments (their lines concur) in the real plane. Prove that if for every three of them there is a line intersecting these three segments, then there is a line that intersects all of the segments.
2003 Miklós Schweitzer, 5
Let $d>1$ be integer and $0<r<\frac12$. Show that there exist finitely many (depending only on $d,r$) nonzero vectors in $\mathbb{R}^d$ such that if the distance of a straight line in $\mathbb{R}^d$ from the integer lattice $\mathbb{Z}^d$ is at least $r$, then this line is orthogonal to one of these finitely many vectors.
(translated by L. Erdős)
PEN M Problems, 27
Let $ p \ge 3$ be a prime number. The sequence $ \{a_{n}\}_{n \ge 0}$ is defined by $ a_{n}=n$ for all $ 0 \le n \le p-1$, and $ a_{n}=a_{n-1}+a_{n-p}$ for all $ n \ge p$. Compute $ a_{p^{3}}\; \pmod{p}$.
1990 IMO Longlists, 74
Let $L$ be a subset in the coordinate plane defined by $L = \{(41x + 2y, 59x + 15y) | x, y \in \mathbb Z \}$, where $\mathbb Z$ is set of integers. Prove that for any parallelogram with center in the origin of coordinate and area $1990$, there exist at least two points of $L$ located in it.
1985 AMC 8, 8
If $ a\equal{}\minus{}2$, the largest number in the set $ \left \{ \minus{}3a,4a,\frac{24}{a},a^2,1 \right \}$ is
\[ \textbf{(A)}\ \minus{}3a \qquad
\textbf{(B)}\ 4a \qquad
\textbf{(C)}\ \frac{24}{a} \qquad
\textbf{(D)}\ a^2 \qquad
\textbf{(E)}\ 1
\]
1976 Bundeswettbewerb Mathematik, 4
Each vertex of the 3-dimensional Euclidean space either is coloured red or blue. Prove that within those squares being possible in this space with edge length 1 there is at least one square either with three red vertices or four blue vertices !
1986 Tournament Of Towns, (115) 3
Vectors coincide with the edges of an arbitrary tetrahedron (possibly non-regular). Is it possible for the sum of these six vectors to equal the zero vector?
(Problem from Leningrad)
1999 Slovenia National Olympiad, Problem 2
Three unit vectors $a,b,c$ are given on the plane. Prove that one can choose the signs in the expression $x=\pm a\pm b\pm c$ so as to obtain a vector $x$ with $|x|\le\sqrt2$.
MathLinks Contest 7th, 2.2
For a prime $ p$ an a positive integer $ n$, denote by $ \nu_p(n)$ the exponent of $ p$ in the prime factorization of $ n!$. Given a positive integer $ d$ and a finite set $ \{p_1,p_2,\ldots, p_k\}$ of primes, show that there are infinitely many positive integers $ n$ such that $ \nu_{p_i}(n) \equiv 0 \pmod d$, for all $ 1\leq i \leq k$.
2003 All-Russian Olympiad Regional Round, 11.4
Points $ A_1,A_2,...,A_n$ and $ B_1,B_2,...,B_n$ are given on a plane. Show that the points $ B_i$ can be renumbered in such a way that the angle between vectors $ A_iA_j^{\longrightarrow}$ and $ B_iB_j^{\longrightarrow}$ is acute or right whenever $ i\neq j$.
MathLinks Contest 6th, 1.3
[i]Introductory part [/i]
We call an $n$-tuple $x = (x_1, x_2, ... , x_n)$, with $x_k \in R$ (or respectively with all $x_k \in Z$) a real vector (or respectively an integer vector). The set of all real vectors (respectively all integer vectors) is usually denoted by $R^n$ (respectively $Z^n$).
A vector $x$ is null if and only if $x_k = 0$, for all $k \in \{1, 2,... , n\}$. Also let $U_n$ be the set of all real vectors $x = (x_1, x_2, ... , x_n)$, such that $x^2_1 + x^2_2 + ...+ x^2_n = 1$.
For two vectors $x = (x_1, ... , x_n), y = (y_1, ..., y_n)$ we define the scalar product as the real number $x\cdot y = x_1y_1 + x_2y_2 +...+ x_ny_n$. We define the norm of the vector $x$ as $||x|| =\sqrt{x^2_1 + x^2_2 + ...+ x^2_n}$
[i]The problem[/i]
Let $A(k, r) = \{x \in U_n |$ for all $z \in Z^n$ we have either $|x \cdot z| \ge \frac{k}{||z||^r}$ or $z$ is null $\}$.
Prove that if $r > n - 1$ the we can find a positive number $k$ such that $A(k, r)$ is not empty, and if $r < n - 1$ we cannot find such a positive number $k$.
1974 IMO Longlists, 51
There are $n$ points on a flat piece of paper, any two of them at a distance of at least $2$ from each other. An inattentive pupil spills ink on a part of the paper such that the total area of the damaged part equals $\frac 32$. Prove that there exist two vectors of equal length less than $1$ and with their sum having a given direction, such that after a translation by either of these two vectors no points of the given set remain in the damaged area.
2013 Romania National Olympiad, 1
Given A, non-inverted matrices of order n with real elements, $n\ge 2$ and given ${{A}^{*}}$adjoin matrix A. Prove that $tr({{A}^{*}})\ne -1$ if and only if the matrix ${{I}_{n}}+{{A}^{*}}$ is invertible.
2009 Italy TST, 1
Let $n,k$ be positive integers such that $n\ge k$. $n$ lamps are placed on a circle, which are all off. In any step we can change the state of $k$ consecutive lamps. In the following three cases, how many states of lamps are there in all $2^n$ possible states that can be obtained from the initial state by a certain series of operations?
i)$k$ is a prime number greater than $2$;
ii) $k$ is odd;
iii) $k$ is even.
1990 IMO Longlists, 1
Prove that on the coordinate plane it is impossible to draw a closed broken line such that
[i](i)[/i] the coordinates of each vertex are rational;
[i](ii)[/i] the length each of its edges is 1;
[i](iii)[/i] the line has an odd number of vertices.
1999 Estonia National Olympiad, 4
For the given triangle $ABC$, prove that a point $X$ on the side $AB$ satisfies the condition $\overrightarrow{XA} \cdot\overrightarrow{XB} +\overrightarrow{XC} \cdot \overrightarrow{XC} = \overrightarrow{CA} \cdot \overrightarrow{CB} $, iff $X$ is the basepoint of the altitude or median of the triangle $ABC$.
2010 Postal Coaching, 4
Five distinct points $A, B, C, D$ and $E$ lie in this order on a circle of radius $r$ and satisfy $AC = BD = CE = r$. Prove that the orthocentres of the triangles $ACD, BCD$ and $BCE$ are the vertices of a right-angled triangle.
2004 Tuymaada Olympiad, 3
Zeroes and ones are arranged in all the squares of $n\times n$ table.
All the squares of the left column are filled by ones, and the sum of numbers in every figure of the form
[asy]size(50); draw((2,1)--(0,1)--(0,2)--(2,2)--(2,0)--(1,0)--(1,2));[/asy]
(consisting of a square and its neighbours from left and from below)
is even.
Prove that no two rows of the table are identical.
[i]Proposed by O. Vanyushina[/i]
1982 Canada National Olympiad, 5
The altitudes of a tetrahedron $ABCD$ are extended externally to points $A'$, $B'$, $C'$, and $D'$, where $AA' = k/h_a$, $BB' = k/h_b$, $CC' = k/h_c$, and $DD' = k/h_d$. Here, $k$ is a constant and $h_a$ denotes the length of the altitude of $ABCD$ from vertex $A$, etc. Prove that the centroid of tetrahedron $A'B'C'D'$ coincides with the centroid of $ABCD$.
2009 Putnam, B4
Say that a polynomial with real coefficients in two variable, $ x,y,$ is [i]balanced[/i] if the average value of the polynomial on each circle centered at the origin is $ 0.$ The balanced polynomials of degree at most $ 2009$ form a vector space $ V$ over $ \mathbb{R}.$ Find the dimension of $ V.$
2004 Irish Math Olympiad, 3
$AB$ is a chord of length $6$ of a circle centred at $O$ and of radius $5$. Let $PQRS$ denote the square inscribed in the sector $OAB$ such that $P$ is on the radius $OA$, $S$ is on the radius $OB$ and $Q$ and $R$ are points on the arc of the circle between $A$ and $B$. Find the area of $PQRS$.
2006 Putnam, A3
Let $1,2,3,\dots,2005,2006,2007,2009,2012,2016,\dots$ be a sequence defined by $x_{k}=k$ for $k=1,2\dots,2006$ and $x_{k+1}=x_{k}+x_{k-2005}$ for $k\ge 2006.$ Show that the sequence has 2005 consecutive terms each divisible by 2006.
2004 USA Team Selection Test, 2
Assume $n$ is a positive integer. Considers sequences $a_0, a_1, \ldots, a_n$ for which $a_i \in \{1, 2, \ldots , n\}$ for all $i$ and $a_n = a_0$.
(a) Suppose $n$ is odd. Find the number of such sequences if $a_i - a_{i-1} \not \equiv i \pmod{n}$ for all $i = 1, 2, \ldots, n$.
(b) Suppose $n$ is an odd prime. Find the number of such sequences if $a_i - a_{i-1} \not \equiv i, 2i \pmod{n}$ for all $i = 1, 2, \ldots, n$.
2005 Romania National Olympiad, 1
Let $ABCD$ be a convex quadrilateral with $AD\not\parallel BC$. Define the points $E=AD \cap BC$ and $I = AC\cap BD$. Prove that the triangles $EDC$ and $IAB$ have the same centroid if and only if $AB \parallel CD$ and $IC^{2}= IA \cdot AC$.
[i]Virgil Nicula[/i]