This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2011-2012 SDML (High School), 13

The number of solutions, in real numbers $a$, $b$, and $c$, to the system of equations $$a+bc=1,$$$$b+ac=1,$$$$c+ab=1,$$ is $\text{(A) }3\qquad\text{(B) }4\qquad\text{(C) }5\qquad\text{(D) more than }5\text{, but finitely many}\qquad\text{(E) infinitely many}$

2003 Tournament Of Towns, 2

$P(x)$ is a polynomial with real coefficients such that $P(a_1) = 0, P(a_{i+1}) = a_i$ ($i = 1, 2,\ldots$) where $\{a_i\}_{i=1,2,\ldots}$ is an infinite sequence of distinct natural numbers. Determine the possible values of degree of $P(x)$.

2007 Regional Competition For Advanced Students, 3

Let $ a$ be a positive real number and $ n$ a non-negative integer. Determine $ S\minus{}T$, where $ S\equal{} \sum_{k\equal{}\minus{}2n}^{2n\plus{}1} \frac{(k\minus{}1)^2}{a^{| \lfloor \frac{k}{2} \rfloor |}}$ and $ T\equal{} \sum_{k\equal{}\minus{}2n}^{2n\plus{}1} \frac{k^2}{a^{| \lfloor \frac{k}{2} \rfloor |}}$

1982 IMO Shortlist, 12

Four distinct circles $C,C_1, C_2$, C3 and a line L are given in the plane such that $C$ and $L$ are disjoint and each of the circles $C_1, C_2, C_3$ touches the other two, as well as $C$ and $L$. Assuming the radius of $C$ to be $1$, determine the distance between its center and $L.$

2025 Kyiv City MO Round 2, Problem 2

A positive integer \( n \) satisfies the following conditions: [list] [*] The number \( n \) has exactly \( 60 \) divisors: \( 1 = a_1 < a_2 < \cdots < a_{60} = n \); [*] The number \( n+1 \) also has exactly \( 60 \) divisors: \( 1 = b_1 < b_2 < \cdots < b_{60} = n+1 \). [/list] Let \( k \) be the number of indices \( i \) such that \( a_i < b_i \). Find all possible values of \( k \). [i]Note: Such numbers exist, for example, the numbers \( 4388175 \) and \( 4388176 \) both have \( 60 \) divisors.[/i] [i]Proposed by Anton Trygub[/i]

2024 Mathematical Talent Reward Programme, 6

Show that there exists an integer polynomial $P$ such that $P(1) = 2024$ and the set of prime divisors of {$P(2^k)$},$k=0,1,2,.....$ is an infinite set.

2019 Singapore Senior Math Olympiad, 2

Graph $G$ has $n$ vertices and $mn$ edges, where $n>2m$, show that there exists a path with $m+1$ vertices. (A path is an open walk without repeating vertices )

1998 Belarusian National Olympiad, 7

On the plane $n+1$ points are marked, no three of which lie on one straight line. For what natural $k$ can they be connected by segments so that for any $n$ marked points there are exactly $k$ segments with ends at these points?

2025 Israel National Olympiad (Gillis), P2

Let $ABCD$ be a rhombus. Eight additional points $X_1$, $X_2$, $Y_1$, $Y_2$, $Z_1$, $Z_2$, $W_1$, $W_2$ were chosen so that the quadrilaterals $AX_1BX_2$, $BY_1CY_2$, $CZ_1DZ_2$, $DW_1AW_2$ are squares. Prove that the eight new points lie on two straight lines.

2017 Mathematical Talent Reward Programme, SAQ: P 3

Tags: function , algebra
Let $f:[0,1]\to [0,1]$ be a continuous function. We say $f\equiv 0$ if $f(x)=0$ for all $x\in [0,1]$ and similarly $f\not\equiv 0$ if there exists at least one $x\in [0,1]$ such that $f(x)\neq 0$. Suppose $f\not\equiv 0$, $f \circ f \not\equiv 0$ but $f \circ f \circ f \equiv 0$. Do there exists such an $f$? If yes construct such an function, if no prove it

1975 Poland - Second Round, 4

Prove that the non-negative numbers $ a_1, a_2, \ldots, a_n $ ($ n = 1, 2, \ldots $) satisfy the inequality $ x_1, x_2, \ldots, x_n $ for any real numbers $$ \left( \sum_{i=1}^n a_i x_i^2 \right)^2 \leq \sum_{i=1}^n a_i x_i^4.$$ it is necessary and sufficient that $ \sum_{i=1}^n a_i \leq 1 $.

2005 China Team Selection Test, 3

We call a matrix $\textsl{binary matrix}$ if all its entries equal to $0$ or $1$. A binary matrix is $\textsl{Good}$ if it simultaneously satisfies the following two conditions: (1) All the entries above the main diagonal (from left to right), not including the main diagonal, are equal. (2) All the entries below the main diagonal (from left to right), not including the main diagonal, are equal. Given positive integer $m$, prove that there exists a positive integer $M$, such that for any positive integer $n>M$ and a given $n \times n$ binary matrix $A_n$, we can select integers $1 \leq i_1 <i_2< \cdots < i_{n-m} \leq n$ and delete the $i_i$-th, $i_2$-th,$\cdots$, $i_{n-m}$-th rows and $i_i$-th, $i_2$-th,$\cdots$, $i_{n-m}$-th columns of $A_n$, then the resulting binary matrix $B_m$ is $\textsl{Good}$.

2004 Junior Balkan Team Selection Tests - Romania, 4

A regular polygon with $1000$ sides has the vertices colored in red, yellow or blue. A move consists in choosing to adjiacent vertices colored differently and coloring them in the third color. Prove that there is a sequence of moves after which all the vertices of the polygon will have the same color. Marius Ghergu

2021 Middle European Mathematical Olympiad, 8

Prove that there are infinitely many positive integers $n$ such that $n^2$ written in base $4$ contains only digits $1$ and $2$.

2000 Chile National Olympiad, 7

Consider the following equation in $x$: $$ax (x^2 + ax + 1) = b (x^2 + b + 1).$$ It is known that $a, b$ are real such that $ab <0$ and furthermore the equation has exactly two integer roots positive. Prove that under these conditions $a^2 + b^2$ is not a prime number.

2004 Mexico National Olympiad, 5

Let $\omega_1$ and $\omega_2$ be two circles such that the center $O$ of $\omega_2$ lies in $\omega_1$. Let $C$ and $D$ be the two intersection points of the circles. Let $A$ be a point on $\omega_1$ and let $B$ be a point on $\omega_2$ such that $AC$ is tangent to $\omega_2$ in C and BC is tangent to $\omega_1$ in $C$. The line segment $AB$ meets $\omega_2$ again in $E$ and also meets $\omega_1$ again in F. The line $CE$ meets $\omega_1$ again in $G$ and the line $CF$ meets the line $GD$ in $H$. Prove that the intersection point of $GO$ and $EH$ is the center of the circumcircle of the triangle $DEF$.

1994 Spain Mathematical Olympiad, 1

Prove that if an arithmetic progression contains a perfect square, then it contains infinitely many perfect squares.

Russian TST 2014, P3

Tags: geometry , angle
On the sides $AB{}$ and $AC{}$ of the acute-angled triangle $ABC{}$ the points $M{}$ and $N{}$ are chosen such that $MN$ passes through the circumcenter of $ABC.$ Let $P{}$ and $Q{}$ be the midpoints of the segments $CM{}$ and $BN{}.$ Prove that $\angle POQ=\angle BAC.$

2024 Kazakhstan National Olympiad, 1

Tags: geometry
Let $ABC$ be an acute triangle with an altitude $AD$. Let $H$ be the orthocenter of triangle $ABC$. The circle $\Omega$ passes through the points $A$ and $B$, and touches the line $AC$. Let $BE$ be the diameter of $\Omega$. The lines~$BH$ and $AH$ intersect $\Omega$ for the second time at points $K$ and $L$, respectively. The lines $EK$ and $AB$ intersect at the point~$T$. Prove that $\angle BDK=\angle BLT$.

2004 Junior Balkan Team Selection Tests - Romania, 2

Let $ABC$ be an isosceles triangle with $AB=AC$. Consider a variable point $P$ on the extension of the segment $BC$ beyound $B$ (in other words, $P$ lies on the line $BC$ such that the point $B$ lies inside the segment $PC$). Let $r_{1}$ be the radius of the incircle of the triangle $APB$, and let $r_{2}$ be the radius of the $P$-excircle of the triangle $APC$. Prove that the sum $r_{1}+r_{2}$ of these two radii remains constant when the point $P$ varies. [i]Remark.[/i] The $P$-excircle of the triangle $APC$ is defined as the circle which touches the side $AC$ and the [i]extensions[/i] of the sides $AP$ and $CP$.

2013 Tournament of Towns, 3

Denote by $(a, b)$ the greatest common divisor of $a$ and $b$. Let $n$ be a positive integer such that $(n, n + 1) < (n, n + 2) <... < (n,n + 35)$. Prove that $(n, n + 35) < (n,n + 36)$.

2013 Dutch IMO TST, 2

Let $P$ be the point of intersection of the diagonals of a convex quadrilateral $ABCD$.Let $X,Y,Z$ be points on the interior of $AB,BC,CD$ respectively such that $\frac{AX}{XB}=\frac{BY}{YC}=\frac{CZ}{ZD}=2$. Suppose that $XY$ is tangent to the circumcircle of $\triangle CYZ$ and that $Y Z$ is tangent to the circumcircle of $\triangle BXY$.Show that $\angle APD=\angle XYZ$.

1998 Gauss, 21

Tags: gauss
Ten points are spaced equally around a circle. How many different chords can be formed by joining any 2 of these points? (A chord is a straight line joining two points on the circumference of a circle.) $\textbf{(A)}\ 9 \qquad \textbf{(B)}\ 45 \qquad \textbf{(C)}\ 17 \qquad \textbf{(D)}\ 66 \qquad \textbf{(E)}\ 55$

2006 China Girls Math Olympiad, 1

Tags: function , algebra
Let $a>0$, the function $f: (0,+\infty) \to R$ satisfies $f(a)=1$, if for any positive reals $x$ and $y$, there is \[f(x)f(y)+f \left( \frac{a}{x}\right)f \left( \frac{a}{y}\right) =2f(xy)\] then prove that $f(x)$ is a constant.

2000 Estonia National Olympiad, 1

The managing director of AS Mull, a brokerage company for soap bubbles, air castles and cheese holes, kissed the sales manager lazily, claiming that the company's sales volume in December had decreased by more than $10\%$ compared to October. Muugijuht, on the other hand, wrote in his quarterly report that although each, in the first half of the month, sales decreased compared to the second half of the previous month $30\%$ of the time, it increased in the second half of each month compared to the first half of the same month by $35\%$. Was the CEO wrong when the sales manager's report is true?