This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2024 Chile National Olympiad., 1

Tags: algebra , function
Let \( f(x) = \frac{100^x}{100^x + 10} \). Determine the value of: \[ f\left( \frac{1}{2024} \right) - f\left( \frac{2}{2024} \right) + f\left( \frac{3}{2024} \right) - f\left( \frac{4}{2024} \right) + \ldots - f\left( \frac{2022}{2024} \right) + f\left( \frac{2023}{2024} \right) \]

1983 Bundeswettbewerb Mathematik, 1

The figure shows a triangular pool table with sides $a$, $b$ and $c$. Located at point $S$ on $c$ a sphere - which can be assumed as a point. After kick-off, as indicated in the figure, it runs through as a result of reflections to $a, b, a, b$ and $c$ (in $S$) always the same track. The reflection occurs according to law of reflection. Characterize entilrely all triangles $ABC$, which allow such an orbit, and determine the locus of $S$. [img]https://cdn.artofproblemsolving.com/attachments/5/b/7662943e5b9ad321226e0c5f5daa3c4ac9faaa.png[/img]

2021 Belarusian National Olympiad, 8.2

Given quadratic trinomials $P(x)=x^2+ax+b$ and $Q(x)=x^2+cx+d$, where $a>c$. It is known that for every real $t$ and $s$ with $t+s=1$ the polynomial $B(x)=tP(x)+sQ(x)$ has at least one real root. Prove that $bc \geq ad$.

2008 Harvard-MIT Mathematics Tournament, 3

([b]4[/b]) Find all $ y > 1$ satisfying $ \int^y_1x\ln x\ dx \equal{} \frac {1}{4}$.

2017 ASDAN Math Tournament, 2

Tags:
Let $5$ and $13$ be lengths of two sides of a right triangle. Compute the sum of all possible lengths of the third side.

2019 SG Originals, Q5

Let $n$ be a positive integer and consider an arrangement of $2n$ blocks in a straight line, where $n$ of them are red and the rest blue. A swap refers to choosing two consecutive blocks and then swapping their positions. Let $A$ be the minimum number of swaps needed to make the first $n$ blocks all red and $B$ be the minimum number of swaps needed to make the first $n$ blocks all blue. Show that $A+B$ is independent of the starting arrangement and determine its value.

1989 China Team Selection Test, 3

$1989$ equal circles are arbitrarily placed on the table without overlap. What is the least number of colors are needed such that all the circles can be painted with any two tangential circles colored differently.

PEN G Problems, 25

Show that $\tan \left( \frac{\pi}{m} \right)$ is irrational for all positive integers $m \ge 5$.

2011 India National Olympiad, 3

Let $P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0$ and $Q(x)=b_nx^n+b_{n-1}x^{n-1}+\cdots+b_0$ be two polynomials with integral coefficients such that $a_n-b_n$ is a prime and $a_nb_0-a_0b_n\neq 0,$ and $a_{n-1}=b_{n-1}.$ Suppose that there exists a rational number $r$ such that $P(r)=Q(r)=0.$ Prove that $r\in\mathbb Z.$

1985 IMO Longlists, 75

Let $ABCD$ be a rectangle, $AB = a, BC = b$. Consider the family of parallel and equidistant straight lines (the distance between two consecutive lines being $d$) that are at an the angle $\phi, 0 \leq \phi \leq 90^{\circ},$ with respect to $AB$. Let $L$ be the sum of the lengths of all the segments intersecting the rectangle. Find: [i](a)[/i] how $L $ varies, [i](b)[/i] a necessary and sufficient condition for $L$ to be a constant, and [i](c)[/i] the value of this constant.

2004 Iran MO (3rd Round), 21

$ a_1, a_2, \ldots, a_n$ are integers, not all equal. Prove that there exist infinitely many prime numbers $ p$ such that for some $ k$ \[ p\mid a_1^k \plus{} \dots \plus{} a_n^k.\]

2012 Baltic Way, 18

Find all triples $(a,b,c)$ of integers satisfying $a^2 + b^2 + c^2 = 20122012$.

1995 Chile National Olympiad, 2

Tags: area , arc , circles , geometry
In a circle of radius $1$, six arcs of radius $1$ are drawn, which cut the circle as in the figure. Determine the black area. [img]https://cdn.artofproblemsolving.com/attachments/8/9/0323935be8406ea0c452b3c8417a8148c977e3.jpg[/img]

1999 Singapore Team Selection Test, 1

Let $M$ and $N$ be two points on the side BC of a triangle $ABC$ such that $BM =MN = NC$. A line parallel to $AC$ meets the segments $AB, AM$ and $AN$ at the points $D, E$ and $F$ respectively. Prove that $EF = 3DE$

2011 Tournament of Towns, 3

Along a circle are $100$ white points. An integer $k$ is given, where $2 \le k \le 50$. In each move, we choose a block of $k$ adjacent points such that the first and the last are white, and we paint both of them black. For which values of $k$ is it possible for us to paint all $100$ points black after $50$ moves?

PEN A Problems, 25

Show that ${2n \choose n} \; \vert \; \text{lcm}(1,2, \cdots, 2n)$ for all positive integers $n$.

1998 All-Russian Olympiad, 2

A convex polygon is partitioned into parallelograms. A vertex of the polygon is called [i]good[/i] if it belongs to exactly one parallelogram. Prove that there are more than two good vertices.

2000 German National Olympiad, 6

A sequence ($a_n$) satisfies the following conditions: (i) For each $m \in N$ it holds that $a_{2^m} = 1/m$. (ii) For each natural $n \ge 2$ it holds that $a_{2n-1}a_{2n} = a_n$. (iii) For all integers $m,n$ with $2m > n \ge 1$ it holds that $a_{2n}a_{2n+1} = a_{2^m+n}$. Determine $a_{2000}$. You may assume that such a sequence exists.

2004 AMC 10, 22

Tags:
Square $ABCD$ has side length 2. A semicircle with diameter $AB$ is constructed inside the square, and the tangent to the semicircle from $C$ intersects side $AD$ at $E$. What is the length of $CE$? [asy]defaultpen(linewidth(0.8)); pair A=origin, B=(1,0), C=(1,1), D=(0,1), X=tangent(C, (0.5,0), 0.5, 1), F=C+2*dir(C--X), E=intersectionpoint(C--F, A--D); draw(C--D--A--B--C--E); draw(Arc((0.5,0), 0.5, 0, 180)); pair point=(0.5,0.5); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E));[/asy] $ \textbf{(A)}\frac{2+\sqrt5}2\qquad \textbf{(B)}\sqrt5\qquad \textbf{(C)}\sqrt6\qquad \textbf{(D)}\frac52\qquad \textbf{(E)}5-\sqrt5 $

2009 AMC 12/AHSME, 14

Five unit squares are arranged in the coordinate plane as shown, with the lower left corner at the origin. The slanted line, extending from $ (a,0)$ to $ (3,3)$, divides the entire region into two regions of equal area. What is $ a$? [asy]size(200); defaultpen(linewidth(.8pt)+fontsize(8pt)); fill((2/3,0)--(3,3)--(3,1)--(2,1)--(2,0)--cycle,gray); xaxis("$x$",-0.5,4,EndArrow(HookHead,4)); yaxis("$y$",-0.5,4,EndArrow(4)); draw((0,1)--(3,1)--(3,3)--(2,3)--(2,0)); draw((1,0)--(1,2)--(3,2)); draw((2/3,0)--(3,3)); label("$(a,0)$",(2/3,0),S); label("$(3,3)$",(3,3),NE);[/asy]$ \textbf{(A)}\ \frac12\qquad \textbf{(B)}\ \frac35\qquad \textbf{(C)}\ \frac23\qquad \textbf{(D)}\ \frac34\qquad \textbf{(E)}\ \frac45$

2005 Slovenia National Olympiad, Problem 3

Let $T$ be a point inside a square $ABCD$. The lines $TA,TB,TC,TD$ meet the circumcircle of $ABCD$ again at $A',B',C',D'$, respectively. Prove that $A'B'\cdot C'D'=A'D'\cdot B'C'$.

2016 Tournament Of Towns, 3

The quadrilateral $ABCD$ is inscribed in circle $\Omega$ with center $O$, not lying on either of the diagonals. Suppose that the circumcircle of triangle $AOC$ passes through the midpoint of the diagonal $BD$. Prove that the circumcircle of triangle $BOD$ passes through the midpoint of diagonal $AC$. [i](A. Zaslavsky)[/i] (Translated from [url=http://sasja.shap.homedns.org/Turniry/TG/index.html]here.[/url])

2021 Sharygin Geometry Olympiad, 8.3

Three cockroaches run along a circle in the same direction. They start simultaneously from a point $S$. Cockroach $A$ runs twice as slow than $B$, and thee times as slow than $C$. Points $X, Y$ on segment $SC$ are such that $SX = XY =YC$. The lines $AX$ and $BY$ meet at point $Z$. Find the locus of centroids of triangles $ZAB$.

2007 AMC 8, 3

Tags:
What is the sum of the two smallest prime factors of $250$? $\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 7 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 12$

1969 All Soviet Union Mathematical Olympiad, 123

Every city in the certain state is connected by airlines with no more than with three other ones, but one can get from every city to every other city changing a plane once only or directly. What is the maximal possible number of the cities?