Found problems: 85335
2020 BMT Fall, Tie 3
$\vartriangle ABC$ has $AB = 5$, $BC = 12$, and $AC = 13$. A circle is inscribed in $\vartriangle ABC$, and $MN$ tangent to the circle is drawn such that $M$ is on $\overline{AC}$, $N$ is on $\overline{BC}$, and $\overline{MN} \parallel \overline{AB}$. The area of $\vartriangle MNC$ is $m/n$ , where $m$ and $n $are relatively prime positive integers. Find $m + n$.
1955 Moscow Mathematical Olympiad, 290
Is there an integer $n$ such that $n^2 + n + 1$ is divisible by $1955$ ?
2019 China Second Round Olympiad, 3
Point $A,B,C,D,E$ lie on a line in this order, such that $BC=CD=\sqrt{AB\cdot DE},$ $P$ doesn't lie on the line, and satisfys that $PB=PD.$ Point $K,L$ lie on the segment $PB,PD,$ respectively, such that $KC$ bisects $\angle BKE,$ and $LC$ bisects $\angle ALD.$
Prove that $A,K,L,E$ are concyclic.
MBMT Team Rounds, 2020.41
What are the last two digits of $$2^{3^{4^{...^{2019}}}} ?$$
2017 Saudi Arabia JBMO TST, 4
Let $S = \{-17, -16, ..., 16, 17\}$. We call a subset $T$ of $S$ a good set if $-x \in T$ for all $x \in T$ and if $x, y, z \in T (x, y, z$ may be equal) then $x + y + z \ne 0$. Find the largest number of elements in a good set.
2008 May Olympiad, 4
Let $ABF$ be a right-angled triangle with $\angle AFB = 90$, a square $ABCD$ is externally to the triangle. If $FA = 6$, $FB = 8$ and $E$ is the circumcenter of the square $ABCD$, determine the value of $EF$
1925 Eotvos Mathematical Competition, 3
Let $r$ be the radius of the inscribed circle of a right triangle $ABC$. Show that $r$ is less than half of either leg and less than one fourth of the hypotenuse.
1990 All Soviet Union Mathematical Olympiad, 529
A quadratic polynomial $p(x)$ has positive real coefficients with sum $1$. Show that given any positive real numbers with product $1$, the product of their values under $p$ is at least $1$.
2002 Croatia National Olympiad, Problem 2
Let $a,b,c$ be real numbers greater than $1$. Prove the inequality
$$\log_a\left(\frac{b^2}{ac}-b+ac\right)\log_b\left(\frac{c^2}{ab}-c+ab\right)\log_c\left(\frac{a^2}{bc}-a+bc\right)\ge1.$$
PEN A Problems, 1
Show that if $x, y, z$ are positive integers, then $(xy+1)(yz+1)(zx+1)$ is a perfect square if and only if $xy+1$, $yz+1$, $zx+1$ are all perfect squares.
2025 Harvard-MIT Mathematics Tournament, 10
A square of side length $1$ is dissected into two congruent pentagons. Compute the least upper bound of the perimeter of one of these pentagons.
2017 Grand Duchy of Lithuania, 2
A deck of $52$ cards is stacked in a pile facing down. Tom takes the small pile consisting of the seven cards on the top of the deck, turns it around, and places it at the bottom of the deck. All cards are again in one pile, but not all of them face down, since the seven cards at the bottom now face up. Tom repeats this move until all cards face down again. In total, how many moves did Tom make?
2015 May Olympiad, 1
Ana and Celia sell various objects and obtain for each object as many euros as objects they sold. The money obtained is made up of some $10$ euro bills and less than $10$ coins of $1$ euro . They decide to distribute the money as follows: Ana takes a $10$ euro bill and then Celia, and so on successively until Ana takes the last $10$ euro note, and Celia takes all the $1$ euro coins . How many euros more than Celia did Ana take? Give all the possibilities.
[hide=original wording]Ana y Celia venden varios objetos y obtienen por cada objeto tantos euros como objetos vendieron. El dinero obtenido está constituido por algunos billetes de 10 euros y menos de 10 monedas de 1 euro.
Deciden repartir el dinero del siguiente modo: Ana toma un billete de 10 euros y después Celia, y así sucesivamente hasta que Ana toma el último billete de 10 euros, y Celia se lleva todas las monedas de 1 euro. ¿Cuántos euros más que Celia se llevó Ana? Dar todas las posibilidades.[/hide]
1974 IMO Longlists, 27
Let $C_1$ and $C_2$ be circles in the same plane, $P_1$ and $P_2$ arbitrary points on $C_1$ and $C_2$ respectively, and $Q$ the midpoint of segment $P_1P_2.$ Find the locus of points $Q$ as $P_1$ and $P_2$ go through all possible positions.
[i]Alternative version[/i]. Let $C_1, C_2, C_3$ be three circles in the same plane. Find the locus of the centroid of triangle $P_1P_2P_3$ as $P_1, P_2,$ and $P_3$ go through all possible positions on $C_1, C_2$, and $C_3$ respectively.
2002 HKIMO Preliminary Selection Contest, 16
Each face and each vertex of a regular tetrahedron is coloured red or blue. How many different ways of colouring are there? (Two tetrahedrons are said to have the same colouring if we can rotate them suitably so that corresponding faces and vertices are of the same colour.
LMT Speed Rounds, 2013
[b]p1.[/b] What is the smallest positive integer divisible by $20$, $12$, and $13$?
[b]p2.[/b] Two circles of radius $5$ are placed in the plane such that their centers are $7$ units apart. What is the largest possible distance between a point on one circle and a point on the other?
[b]p3.[/b] In a magic square, all the numbers in the rows, columns, and diagonals sum to the same value. How many $2\times 2$ magic squares containing the integers $\{1, 2, 3, 4\}$ are there?
[b]p4.[/b] Ethan's sock drawer contains two pairs of white socks and one pair of red socks. Ethan picks two socks at random. What is the probability that he picks two white socks?
[b]p5.[/b] The sum of the time on a digital clock is the sum of the digits displayed on the screen. For example, the sum of the time at $10:23$ would be $6$. Assuming the clock is a $12$ hour clock, what is the greatest possible positive difference between the sum of the time at some time and the sum of the time one minute later?
[b]p6.[/b] Given the expression $1 \div 2 \div 3 \div 4$, what is the largest possible resulting value if one were to place parentheses $()$ somewhere in the expression?
[b]p7.[/b] At a convention, there are many astronomers, astrophysicists, and cosmologists. At $first$, all the astronomers and astrophysicists arrive. At this point, $\frac35$ of the people in the room are astronomers. Then, all the cosmologists come, so now, $30\%$ of the people in the room are astrophysicists. What fraction of the scientists are cosmologists?
[b]p8.[/b] At $10:00$ AM, a minuteman starts walking down a $1200$-step stationary escalator at $40$ steps per minute. Halfway down, the escalator starts moving up at a constant speed, while the minuteman continues to walk in the same direction and at the same pace that he was going before. At $10:55$ AM, the minuteman arrives back at the top. At what speed is the escalator going up, in steps per minute?
[b]p9.[/b] Given that $x_1 = 57$, $x_2 = 68$, and $x_3 = 32$, let $x_n = x_{n-1} -x_{n-2} +x_{n-3}$ for $n \ge 4$. Find $x_{2013}$.
[b]p10.[/b] Two squares are put side by side such that one vertex of the larger one coincides with a vertex of the smaller one. The smallest rectangle that contains both squares is drawn. If the area of the rectangle is $60$ and the area of the smaller square is $24$, what is the length of the diagonal of the rectangle?
[b]p11.[/b] On a dield trip, $2$ professors, $4$ girls, and $4$ boys are walking to the forest to gather data on butterflies. They must walk in a line with following restrictions: one adult must be the first person in the line and one adult must be the last person in the line, the boys must be in alphabetical order from front to back, and the girls must also be in alphabetical order from front to back. How many such possible lines are there, if each person has a distinct name?
[b]p12.[/b] Flatland is the rectangle with vertices $A, B, C$, and $D$, which are located at $(0, 0)$, $(0, 5)$, $(5, 5)$, and $(5, 0)$, respectively. The citizens put an exact map of Flatland on the rectangular region with vertices $(1, 2)$, $(1, 3)$, $(2, 3)$, and $(2, 2)$ in such a way so that the location of $A$ on the map lies on the point $(1, 2)$ of Flatland, the location of $B$ on the map lies on the point $(1, 3)$ of Flatland, the location of C on the map lies on the point $(2, 3)$ of Flatland, and the location of D on the map lies on the point $(2, 2)$ of Flatland. Which point on the coordinate plane is thesame point on the map as where it actually is on Flatland?
[b]p13.[/b] $S$ is a collection of integers such that any integer $x$ that is present in $S$ is present exactly $x$ times. Given that all the integers from $1$ through $22$ inclusive are present in $S$ and no others are, what is the average value of the elements in $S$?
[b]p14.[/b] In rectangle $PQRS$ with $PQ < QR$, the angle bisector of $\angle SPQ$ intersects $\overline{SQ}$ at point $T$ and $\overline{QR }$ at $U$. If $PT : TU = 3 : 1$, what is the ratio of the area of triangle $PTS$ to the area of rectangle $PQRS$?
[b]p15.[/b] For a function $f(x) = Ax^2 + Bx + C$, $f(A) = f(B)$ and $A + 6 = B$. Find all possible values of $B$.
[b]p16.[/b] Let $\alpha$ be the sum of the integers relatively prime to $98$ and less than $98$ and $\beta$ be the sum of the integers not relatively prime to $98$ and less than $98$. What is the value of $\frac{\alpha}{\beta}$ ?
[b]p17.[/b] What is the value of the series $\frac{1}{3} + \frac{3}{9} + \frac{6}{27} + \frac{10}{81} + \frac{15}{243} + ...$?
[b]p18.[/b] A bug starts at $(0, 0)$ and moves along lattice points restricted to $(i, j)$, where $0 \le i, j \le 2$. Given that the bug moves $1$ unit each second, how many different paths can the bug take such that it ends at $(2, 2)$ after $8$ seconds?
[b]p19.[/b] Let $f(n)$ be the sum of the digits of $n$. How many different values of $n < 2013$ are there such that $f(f(f(n))) \ne f(f(n))$ and $f(f(f(n))) < 10$?
[b]p20.[/b] Let $A$ and $B$ be points such that $\overline{AB} = 14$ and let $\omega_1$ and $\omega_2$ be circles centered at $A$ and $B$ with radii $13$ and $15$, respectively. Let $C$ be a point on $\omega_1$ and $D$ be a point on $\omega_2$ such that $\overline{CD}$ is a common external tangent to $\omega_1$ and $\omega_2$. Let $P$ be the intersection point of the two circles that is closer to $\overline{CD}$. If $M$ is the midpoint of $\overline{CD}$, what is the length of segment $\overline{PM}$?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2009 Czech and Slovak Olympiad III A, 2
Rectangle $ABCD$ is inscribed in circle $O$. Let the projections of a point $P$ on minor arc $CD$ onto $AB,AC,BD$ be $K,L,M$, respectively. Prove that $\angle LKM=45$if and only if $ABCD$ is a square.
2012-2013 SDML (Middle School), 15
Three faces of a rectangular prism have diagonal lengths of $7$, $8$, and $9$ inches. How many cubic inches are in the volume of the rectangular prism?
$\text{(A) }48\sqrt{11}\qquad\text{(B) }160\qquad\text{(C) }14\sqrt{95}\qquad\text{(D) }35\sqrt{15}\qquad\text{(E) }504$
2009 ITAMO, 2
$ABCD$ is a square with centre $O$. Two congruent isosceles triangle $BCJ$ and $CDK$ with base $BC$ and $CD$ respectively are constructed outside the square. let $M$ be the midpoint of $CJ$. Show that $OM$ and $BK$ are perpendicular to each other.
2022 AMC 12/AHSME, 10
Regular hexagon $ABCDEF$ has side length $2$. Let $G$ be the midpoint of $\overline{AB}$, and let $H$ be the midpoint of $\overline{DE}$. What is the perimeter of $GCHF$?
$ \textbf{(A)}\ 4\sqrt3 \qquad
\textbf{(B)}\ 8 \qquad
\textbf{(C)}\ 4\sqrt5 \qquad
\textbf{(D)}\ 4\sqrt7 \qquad
\textbf{(E)}\ 12$
MathLinks Contest 1st, 2
Prove that for all positive integers $a, b, c$ the following inequality holds:
$$\frac{a + b}{a + c}+\frac{b + c}{b + a}+\frac{c + a}{c + b} \le \frac{a}{b}+\frac{b}{c}+\frac{c}{a}$$
2022 Stanford Mathematics Tournament, 5
$x$, $y$, and $z$ are real numbers such that $xyz=10$. What is the maximum possible value of $x^3y^3z^3-3x^4-12y^2-12z^4$?
2017 Princeton University Math Competition, A2/B4
Call a number unremarkable if, when written in base $10$, no two adjacent digits are equal. For example, $123$ is unremarkable, but $122$ is not. Find the sum of all unremarkable $3$-digit numbers. (Note that $012$ and $007$ are not $3$-digit numbers.)
2001 Croatia National Olympiad, Problem 3
Let $a$ and $b$ be positive numbers. Prove the inequality
$$\sqrt[3]{\frac ab}+\sqrt[3]{\frac ba}\le\sqrt[3]{2(a+b)\left(\frac1a+\frac1b\right)}.$$
1990 Polish MO Finals, 1
Find all functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ that satisfy
\[ (x - y)f(x + y) - (x + y)f(x - y) = 4xy(x^2 - y^2) \]