This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2020 AMC 8 -, 10

Tags:
Zara has a collection of $4$ marbles: an Aggie, a Bumblebee, a Steelie, and a Tiger. She wants to display them in a row on a shelf, but does not want to put the Steelie and the Tiger next to one another. In how many ways can she do this? $\textbf{(A) }6 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24$

1988 AMC 12/AHSME, 12

Tags: probability
Each integer $1$ through $9$ is written on a separate slip of paper and all nine slips are put into a hat. Jack picks one of these slips at random and puts it back. Then Jill picks a slip at random. Which digit is most likely to be the units digit of the [b]sum[/b] of Jack's integer and Jill's integer? $ \textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ \text{each digit is equally likely} $

1956 Poland - Second Round, 6

Prove that if in a tetrahedron $ ABCD $ the segments connecting the vertices of the tetrahedron with the centers of circles inscribed in opposite faces intersect at one point, then $$AB \cdot CD = AC \cdot BD = AD \cdot BC$$ and that the converse also holds.

2015 BMT Spring, P2

Suppose $k>3$ is a divisor of $2^p+1$, where $p$ is prime. Prove that $k\ge2p+1$.

2014 All-Russian Olympiad, 4

Two players play a card game. They have a deck of $n$ distinct cards. About any two cards from the deck know which of them has a different (in this case, if $A$ beats $B$, and $B$ beats $C$, then it may be that $C$ beats $A$). The deck is split between players in an arbitrary manner. In each turn the players over the top card from his deck and one whose card has a card from another player takes both cards and puts them to the bottom of your deck in any order of their discretion. Prove that for any initial distribution of cards, the players can with knowing the location agree and act so that one of the players left without a card. [i]E. Lakshtanov[/i]

2012 Tournament of Towns, 4

A quadrilateral $ABCD$ with no parallel sides is inscribed in a circle. Two circles, one passing through $A$ and $B$, and the other through $C$ and $D$, are tangent to each other at $X$. Prove that the locus of $X$ is a circle.

2001 All-Russian Olympiad Regional Round, 9.4

The target is a triangle divided by three families of parallel lines into $100$ equal regular triangles with single sides. A sniper shoots at a target. He aims at triangle and hits either it or one of the sides adjacent to it. He sees the results of his shooting and can choose when stop shooting. What is the greatest number of triangles he can with a guarantee of hitting five times?

2015 China Western Mathematical Olympiad, 5

Let $a,b,c,d$ are lengths of the sides of a convex quadrangle with the area equal to $S$, set $S =\{x_1, x_2,x_3,x_4\}$ consists of permutations $x_i$ of $(a, b, c, d)$. Prove that \[S \leq \frac{1}{2}(x_1x_2+x_3x_4).\]

2020 Brazil EGMO TST, 4

Determine all positive integers $n$ such that $\frac{n(n-1)}{2}-1$ divides $1^7+2^7+\dots +n^7$.

2008 Regional Olympiad of Mexico Center Zone, 5

Each positive integer number $n \ ge 1$ is assigned the number $p_n$ which is the product of all its non-zero digits. For example, $p_6 = 6$, $p_ {32} = 6$, $p_ {203} = 6$. Let $S = p_1 + p_2 + p_3 + \dots + p_ {999}$. Find the largest prime that divides $S $.

2017 India IMO Training Camp, 2

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2018 Online Math Open Problems, 11

Tags:
Lunasa, Merlin, and Lyrica are performing in a concert. Each of them will perform two different solos, and each pair of them will perform a duet, for nine distinct pieces in total. Since the performances are very demanding, no one is allowed to perform in two pieces in a row. In how many different ways can the pieces be arranged in this concert? [i]Proposed by Yannick Yao[/i]

2022 MIG, 23

Tags:
Elax creates a partially filled $4 \times 4$ grid, and is trying to write in positive integers such that any four cells that share no rows and columns always sum to a number $S$. Given that the sum of the numbers in the top row is also $S$, what is the missing cell number? [asy] size(100); add(grid(4,4)); label("$11$", (0.5,1.5)); label("$10$", (0.5,2.5)); label("?", (0.5,3.5)); label("$8$", (1.5,3.5)); label("$7$", (2.5,2.5)); label("$4$", (3.5,0.5)); label("$9$", (3.5,1.5)); [/asy] $\textbf{(A) }4\qquad\textbf{(B) }6\qquad\textbf{(C) }9\qquad\textbf{(D) }10\qquad\textbf{(E) }12$

2013 Benelux, 1

Let $n \ge 3$ be an integer. A frog is to jump along the real axis, starting at the point $0$ and making $n$ jumps: one of length $1$, one of length $2$, $\dots$ , one of length $n$. It may perform these $n$ jumps in any order. If at some point the frog is sitting on a number $a \le 0$, its next jump must be to the right (towards the positive numbers). If at some point the frog is sitting on a number $a > 0$, its next jump must be to the left (towards the negative numbers). Find the largest positive integer $k$ for which the frog can perform its jumps in such an order that it never lands on any of the numbers $1, 2, \dots , k$.

1984 Bundeswettbewerb Mathematik, 4

In a square field of side length $12$ there is a source that contains a system of straight irrigation ditches. This is laid out in such a way that for every point of the field the distance to the next ditch is at most $1$. Here, the source is as a point and are the ditches to be regarded as stretches. It must be verified that the total length of the irrigation ditches is greater than $70$ m. The sketch shows an example of a trench system of the type indicated. [img]https://cdn.artofproblemsolving.com/attachments/6/5/5b51511da468cf14b5823c6acda3c4d2fe8280.png[/img]

2021/2022 Tournament of Towns, P4

Tags: polygon , geometry
A convex $n{}$-gon with $n > 4$ is such that if a diagonal cuts a triangle from it then this triangle is isosceles. Prove that there are at least 2 equal sides among any 4 sides of the $n{}$-gon. [i]Maxim Didin[/i]

2024 Canadian Mathematical Olympiad Qualification, 2

Call a natural number $N$ [i]good [/i]if its base $3$ expansion has no consecutive digits that are the same. For example, $289$ is good since its base $3$ representation is $1012013$. Find the $2024$th smallest good number ($0$ is not considered to be a natural number). Your answer should be in base $10$.

PEN O Problems, 32

An odd integer $ n \ge 3$ is said to be nice if and only if there is at least one permutation $ a_{1}, \cdots, a_{n}$ of $ 1, \cdots, n$ such that the $ n$ sums $ a_{1} \minus{} a_{2} \plus{} a_{3} \minus{} \cdots \minus{} a_{n \minus{} 1} \plus{} a_{n}$, $ a_{2} \minus{} a_{3} \plus{} a_{3} \minus{} \cdots \minus{} a_{n} \plus{} a_{1}$, $ a_{3} \minus{} a_{4} \plus{} a_{5} \minus{} \cdots \minus{} a_{1} \plus{} a_{2}$, $ \cdots$, $ a_{n} \minus{} a_{1} \plus{} a_{2} \minus{} \cdots \minus{} a_{n \minus{} 2} \plus{} a_{n \minus{} 1}$ are all positive. Determine the set of all `nice' integers.

2007 Nicolae Păun, 3

In the following exercise, $ C_G (e) $ denotes the centralizer of the element $ e $ in the group $ G. $ [b]a)[/b] Prove that $ \max_{\sigma\in S_n\setminus\{1\}} \left| C_{S_n} (\sigma ) \right| <\frac{n!}{2} , $ for any natural number $ n\ge 4. $ [b]b)[/b] Show that $ \lim_{n\to\infty} \left(\frac{1}{n!}\cdot\max_{\sigma\in S_n\setminus\{1\}} \left| C_{S_n} (\sigma ) \right|\right) =0. $ [i]Alexandru Cioba[/i]

2010 ISI B.Stat Entrance Exam, 2

Let $a,b,c,d$ be distinct digits such that the product of the $2$-digit numbers $\overline{ab}$ and $\overline{cb}$ is of the form $\overline{ddd}$. Find all possible values of $a+b+c+d$.

2002 Estonia Team Selection Test, 4

Let $ABCD$ be a cyclic quadrilateral such that $\angle ACB = 2\angle CAD$ and $\angle ACD = 2\angle BAC$. Prove that $|CA| = |CB| + |CD|$.

2010 Slovenia National Olympiad, 3

Let $ABC$ be an acute triangle with $|AB| > |AC|.$ Let $D$ be a point on the side $AB$, such that the angles $\angle ACD$ and $\angle CBD$ are equal. Let $E$ denote the midpoint of $BD,$ and let $S$ be the circumcenter of the triangle $BCD.$ Prove that the points $A, E, S$ and $C$ lie on the same circle.

2009 Hong Kong TST, 1

Tags: algebra
Let $ f: Z \to Z$ be such that $ f(1) \equal{} 1, f(2) \equal{} 20, f(\minus{}4) \equal{} \minus{}4$ and $ f(x\plus{}y) \equal{} f(x) \plus{}f(y)\plus{}axy(x\plus{}y)\plus{}bxy\plus{}c(x\plus{}y)\plus{}4 \forall x,y \in Z$, where $ a,b,c$ are constants. (a) Find a formula for $ f(x)$, where $ x$ is any integer. (b) If $ f(x) \geq mx^2\plus{}(5m\plus{}1)x\plus{}4m$ for all non-negative integers $ x$, find the greatest possible value of $ m$.

2013 AMC 8, 20

A $1\times 2$ rectangle is inscribed in a semicircle with longer side on the diameter. What is the area of the semicircle? $\textbf{(A)}\ \frac\pi2 \qquad \textbf{(B)}\ \frac{2\pi}3 \qquad \textbf{(C)}\ \pi \qquad \textbf{(D)}\ \frac{4\pi}3 \qquad \textbf{(E)}\ \frac{5\pi}3$

2009 Princeton University Math Competition, 2

Tetrahedron $ABCD$ has sides of lengths, in increasing order, $7, 13, 18, 27, 36, 41$. If $AB=41$, then what is the length of $CD$?