This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2013 AMC 10, 10

A flower bouquet contains pink roses, red roses, pink carnations, and red carnations. One third of the pink flowers are roses, three fourths of the red flowers are carnations, and six tenths of the flowers are pink. What percent of the flowers are carnations? $ \textbf{(A)}\ 15\qquad\textbf{(B)}\ 30\qquad\textbf{(C)}\ 40\qquad\textbf{(D)}\ 60\qquad\textbf{(E)}\ 70 $

2006 Putnam, B4

Let $Z$ denote the set of points in $\mathbb{R}^{n}$ whose coordinates are $0$ or $1.$ (Thus $Z$ has $2^{n}$ elements, which are the vertices of a unit hypercube in $\mathbb{R}^{n}$.) Given a vector subspace $V$ of $\mathbb{R}^{n},$ let $Z(V)$ denote the number of members of $Z$ that lie in $V.$ Let $k$ be given, $0\le k\le n.$ Find the maximum, over all vector subspaces $V\subseteq\mathbb{R}^{n}$ of dimension $k,$ of the number of points in $V\cap Z.$

2022 AIME Problems, 12

Tags:
For any finite set $X$, let $|X|$ denote the number of elements in $X.$ Define $$S_n = \sum |A \cap B|,$$ where the sum is taken over all ordered pairs $(A, B)$ such that $A$ and $B$ are subsets of $\{1, 2, 3, …, n\}$ with $|A| = |B|.$ For example, $S_2 = 4$ because the sum is taken over the pairs of subsets $$(A, B) \in \{ (\emptyset, \emptyset), (\{1\}, \{1\}), (\{1\}, \{2\}), (\{2\}, \{1\}), (\{2\}, \{2\}), (\{1, 2\}, \{1, 2\})\},$$ giving $S_2 = 0 + 1 + 0 + 0 + 1 + 2 = 4.$ Let $\frac{S_{2022}}{S_{2021}} = \frac{p}{q},$ where $p$ and $q$ are relatively prime positive integers. Find the remainder when $p + q$ is divided by $1000.$

2021 Saudi Arabia Training Tests, 17

Let $ABC$ be an acute, non-isosceles triangle with circumcenter $O$. Tangent lines to $(O)$ at $B,C$ meet at $T$. A line passes through $T$ cuts segments $AB$ at $D$ and cuts ray $CA$ at $E$. Take $M$ as midpoint of $DE$ and suppose that $MA$ cuts $(O)$ again at $K$. Prove that $(MKT)$ is tangent to $(O)$.

1989 All Soviet Union Mathematical Olympiad, 492

$ABC$ is a triangle. $A' , B' , C'$ are points on the segments $BC, CA, AB$ respectively. $\angle B' A' C' = \angle A$ , $\frac{AC'}{C'B} = \frac{BA' }{A' C} = \frac{CB'}{B'A}$. Show that $ABC$ and $A'B'C'$ are similar.

2013 European Mathematical Cup, 3

We are given a combination lock consisting of $6$ rotating discs. Each disc consists of digits $0, 1, 2,\ldots , 9$ in that order (after digit $9$ comes $0$). Lock is opened by exactly one combination. A move consists of turning one of the discs one digit in any direction and the lock opens instantly if the current combination is correct. Discs are initially put in the position $000000$, and we know that this combination is not correct. [list] a) What is the least number of moves necessary to ensure that we have found the correct combination? b) What is the least number of moves necessary to ensure that we have found the correct combination, if we know that none of the combinations $000000, 111111, 222222, \ldots , 999999$ is correct?[/list] [i]Proposed by Ognjen Stipetić and Grgur Valentić[/i]

2010 Saudi Arabia Pre-TST, 1.3

1) Let $a$ and $b$ be relatively prime positive integers. Prove that there is a positive integer $n$ such that $1 \le n \le b$ and $b$ divides $a^n - 1$. 2) Prove that there is a multiple of $7^{2010}$ of the form $99... 9$ ($n$ nines), for some positive integer $n$ not exceeding $7^{2010}$.

1990 China Team Selection Test, 1

In a wagon, every $m \geq 3$ people have exactly one common friend. (When $A$ is $B$'s friend, $B$ is also $A$'s friend. No one was considered as his own friend.) Find the number of friends of the person who has the most friends.

2011 Ukraine Team Selection Test, 8

Is there an increasing sequence of integers $ 0 = {{a} _{0}} <{{a} _{1}} <{{a} _{2}} <\ldots $ for which the following two conditions are satisfied simultaneously: 1) any natural number can be given as $ {{a} _{i}} + {{a} _{j}} $ for some (possibly equal) $ i \ge 0 $, $ j \ge 0$ , 2) $ {{a} _ {n}}> \tfrac {{{n} ^ {2}}} {16} $ for all natural $ n $?

1971 Spain Mathematical Olympiad, 1

Tags: algebra , sum
Calculate $$\sum_{k=5}^{k=49}\frac{11_(k}{2\sqrt[3]{1331_(k}}$$ knowing that the numbers $11$ and $1331$ are written in base $k \ge 4$.

1951 AMC 12/AHSME, 40

Tags:
$ \left(\frac {(x \plus{} 1)^2(x^2 \minus{} x \plus{} 1)^2}{(x^3 \plus{} 1)^2}\right)^2 \cdot \left(\frac {(x \minus{} 1)^2(x^2 \plus{} x \plus{} 1)^2}{(x^3 \minus{} 1)^2}\right)^2$ equals: $ \textbf{(A)}\ (x \plus{} 1)^4 \qquad\textbf{(B)}\ (x^3 \plus{} 1)^4 \qquad\textbf{(C)}\ 1 \qquad\textbf{(D)}\ [(x^3 \plus{} 1)(x^3 \minus{} 1)]^2$ $ \textbf{(E)}\ [(x^3 \minus{} 1)^2]^2$

2008 Tuymaada Olympiad, 4

Point $ I_1$ is the reflection of incentre $ I$ of triangle $ ABC$ across the side $ BC$. The circumcircle of $ BCI_1$ intersects the line $ II_1$ again at point $ P$. It is known that $ P$ lies outside the incircle of the triangle $ ABC$. Two tangents drawn from $ P$ to the latter circle touch it at points $ X$ and $ Y$. Prove that the line $ XY$ contains a medial line of the triangle $ ABC$. [i]Author: L. Emelyanov[/i]

2020 May Olympiad, 2

Paul wrote the list of all four-digit numbers such that the hundreds digit is $5$ and the tens digit is $7$. For example, $1573$ and $7570$ are on Paul's list, but $2754$ and $571$ are not. Find the sum of all the numbers on Pablo's list. $Note$. The numbers on Pablo's list cannot start with zero.

2015 HMNT, 6

Tags:
Marcus and four of his relatives are at a party. Each pair of the five people are either $\textit{friends}$ or $\textit{enemies}$. For any two enemies, there is no person that they are both friends with. In how many ways is this possible?

1996 Yugoslav Team Selection Test, Problem 1

Let $\mathfrak F=\{A_1,A_2,\ldots,A_n\}$ be a collection of subsets of the set $S=\{1,2,\ldots,n\}$ satisfying the following conditions: (a) Any two distinct sets from $\mathfrak F$ have exactly one element in common; (b) each element of $S$ is contained in exactly $k$ of the sets in $\mathfrak F$. Can $n$ be equal to $1996$?

2011 Tuymaada Olympiad, 4

Prove that, among $100000$ consecutive $100$-digit positive integers, there is an integer $n$ such that the length of the period of the decimal expansion of $\frac1n$ is greater than $2011$.

2010 China Team Selection Test, 2

Let $M=\{1,2,\cdots,n\}$, each element of $M$ is colored in either red, blue or yellow. Set $A=\{(x,y,z)\in M\times M\times M|x+y+z\equiv 0\mod n$, $x,y,z$ are of same color$\},$ $B=\{(x,y,z)\in M\times M\times M|x+y+z\equiv 0\mod n,$ $x,y,z$ are of pairwise distinct color$\}.$ Prove that $2|A|\geq |B|$.

2017 CHMMC (Fall), 5

Find the number of primes $p$ such that $p! + 25p$ is a perfect square.

2006 Singapore Junior Math Olympiad, 3

Suppose that each of $n$ people knows exactly one piece of information and all $n$ pieces are different. Every time person $A$ phones person $B$, $A$ tells $B$ everything he knows, while tells $A$ nothing. What is the minimum of phone calls between pairs of people needed for everyone to know everything?

1988 Kurschak Competition, 1

Tags: geometry
Prove that if there exists a point $P$ inside the convex quadrilateral $ABCD$ such that the triangles $PAB$, $PBC$, $PCD$, $PDA$ have the same area, then one of the diagonals of $ABCD$ bisects the area of the quadrilateral.

1954 Moscow Mathematical Olympiad, 281

*. Positive numbers $x_1, x_2, ..., x_{100}$ satisfy the system $$\begin{cases} x^2_1+ x^2_2+ ... + x^2_{100} > 10 000 \\ x_1 + x_2 + ...+ x_{100} < 300 \end{cases}$$ Prove that among these numbers there are three whose sum is greater than $100$.

Indonesia MO Shortlist - geometry, g7

Given an isosceles trapezoid $ABCD$ with base $AB$. The diagonals $AC$ and $BD$ intersect at point $S$. Let $M$ the midpoint of $BC$ and the bisector of the angle $BSC$ intersect $BC$ at $N$. Prove that $\angle AMD = \angle AND$.

2005 MOP Homework, 6

Tags: algebra , induction
Let $n$ be a positive integer. Show that \begin{align*}&\quad\,\,\frac{1}{\binom{n}{1}}+\frac{1}{2\binom{n}{2}}+\frac{1}{3\binom{n}{3}}+\cdots+\frac{1}{n\binom{n}{n}}\\&=\frac{1}{2^{n-1}}+\frac{1}{2\cdot2^{n-2}}+\frac{1}{3\cdot2^{n-3}}+\cdots+\frac{1}{n\cdot2^0}.\end{align*}

2011 Kosovo National Mathematical Olympiad, 4

Tags: geometry
It is given a convex hexagon $A_1A_2 \cdots A_6$ such that all its interior angles are same valued (congruent). Denote by $a_1= \overline{A_1A_2},\ \ a_2=\overline{A_2A_3},\ \cdots , a_6=\overline{A_6A_1}.$ $a)$ Prove that holds: $ a_1-a_4=a_2-a_5=a_3-a_6 $ $b)$ Prove that if $a_1,a_2,a_3,...,a_6$ satisfy the above equation, we can construct a convex hexagon with its same-valued (congruent) interior angles.

2019 Durer Math Competition Finals, 5

In one of the hotels of the wellness planet Oxys, there are $2019$ saunas. The managers have decided to accommodate $k$ couples for the upcoming long weekend. We know the following about the guests: if two women know each other then their husbands also know each other, and vice versa. There are several restrictions on the usage of saunas. Each sauna can be used by either men only, or women only (but there is no limit on the number of people using a sauna at once, as long as they are of a single gender). Each woman is only willing to share a sauna with women whom she knows, and each man is only willing to share a sauna with men whom he does not know. What is the greatest possible $k$ for which we can guarantee, without knowing the exact relationships between the couples, that all the guests can use the saunas simultaneously while respecting the restrictions above?