This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2025 Kyiv City MO Round 1, Problem 4

Find all functions \( f : \mathbb{N} \to \mathbb{N} \) that satisfy the following condition: for any positive integers \( m \) and \( n \) such that \( m > n \) and \( m \) is not divisible by \( n \), if we denote by \( r \) the remainder of the division of \( m \) by \( n \), then the remainder of the division of \( f(m) \) by \( n \) is \( f(r) \). [i]Proposed by Mykyta Kharin[/i]

2008 Flanders Math Olympiad, 2

Let $a, b$ and $c$ be integers such that $a+b+c = 0$. Prove that $\frac12(a^4 +b^4 +c^4)$ is a perfect square.

2008 Switzerland - Final Round, 6

Determine all odd natural numbers of the form $$\frac{p + q}{p - q},$$ where $p > q$ are prime numbers.

2003 AMC 10, 19

A semicircle of diameter $ 1$ sits at the top of a semicircle of diameter $ 2$, as shown. The shaded area inside the smaller semicircle and outside the larger semicircle is called a lune. Determine the area of this lune. [asy]unitsize(2.5cm); defaultpen(fontsize(10pt)+linewidth(.8pt)); filldraw(Circle((0,.866),.5),grey,black); label("1",(0,.866),S); filldraw(Circle((0,0),1),white,black); draw((-.5,.866)--(.5,.866),linetype("4 4")); clip((-1,0)--(1,0)--(1,2)--(-1,2)--cycle); draw((-1,0)--(1,0)); label("2",(0,0),S);[/asy]$ \textbf{(A)}\ \frac {1}{6}\pi \minus{} \frac {\sqrt {3}}{4} \qquad \textbf{(B)}\ \frac {\sqrt {3}}{4} \minus{} \frac {1}{12}\pi \qquad \textbf{(C)}\ \frac {\sqrt {3}}{4} \minus{} \frac {1}{24}\pi\qquad\textbf{(D)}\ \frac {\sqrt {3}}{4} \plus{} \frac {1}{24}\pi$ $ \textbf{(E)}\ \frac {\sqrt {3}}{4} \plus{} \frac {1}{12}\pi$

2008 Indonesia TST, 1

Let $A$ be the subset of $\{1, 2, ..., 16\}$ that has $6$ elements. Prove that there exist $2$ subsets of $A$ that are disjoint, and the sum of their elements are the same.

2012 Junior Balkan Team Selection Tests - Moldova, 3

Let $ ABC $ be an isosceles triangle with $ AC=BC $ . Take points $ D $ on side $AC$ and $E$ on side $BC$ and $ F $ the intersection of bisectors of angles $ DEB $ and $ADE$ such that $ F$ lies on side $AB$. Prove that $F$ is the midpoint of $AB$.

1998 USAMTS Problems, 5

The figure on the right shows the ellipse $\frac{(x-19)^2}{19}+\frac{(x-98)^2}{98}=1998$. Let $R_1,R_2,R_3,$ and $R_4$ denote those areas within the ellipse that are in the first, second, third, and fourth quadrants, respectively. Determine the value of $R_1-R_2+R_3-R_4$. [asy] defaultpen(linewidth(0.7)); pair c=(19,98); real dist = 30; real a = sqrt(1998*19),b=sqrt(1998*98); xaxis("x",c.x-a-dist,c.x+a+3*dist,EndArrow); yaxis("y",c.y-b-dist*2,c.y+b+3*dist,EndArrow); draw(ellipse(c,a,b)); label("$R_1$",(100,200)); label("$R_2$",(-80,200)); label("$R_3$",(-60,-150)); label("$R_4$",(70,-150));[/asy]

2008 iTest Tournament of Champions, 3

A regular $2008$-gon is located in the Cartesian plane such that $(x_1,y_1)=(p,0)$ and $(x_{1005},y_{1005})=(p+2,0)$, where $p$ is prime and the vertices, \[(x_1,y_1),(x_2,y_2),(x_3,y_3),\cdots,(x_{2008},y_{2008}),\] are arranged in counterclockwise order. Let \begin{align*}S&=(x_1+y_1i)(x_3+y_3i)(x_5+y_5i)\cdots(x_{2007}+y_{2007}i),\\T&=(y_2+x_2i)(y_4+x_4i)(y_6+x_6i)\cdots(y_{2008}+x_{2008}i).\end{align*} Find the minimum possible value of $|S-T|$.

1962 All Russian Mathematical Olympiad, 022

The $M$ point is the midpoint of the base $[AC]$ of an isosceles triangle $ABC$. $[MH]$ is orthogonal to $[BC]$ side. Point $P$ is the midpoint of the segment $[MH]$. Prove that $[AH]$ is orthogonal to $[BP]$.

JBMO Geometry Collection, 1998

Tags: geometry
Let $ABCDE$ be a convex pentagon such that $AB=AE=CD=1$, $\angle ABC=\angle DEA=90^\circ$ and $BC+DE=1$. Compute the area of the pentagon. [i]Greece[/i]

1965 Leningrad Math Olympiad, grade 8

[b]8.1[/b] A $24 \times 60$ rectangle is divided by lines parallel to it sides, into unit squares. Draw another straight line so that after that the rectangle was divided into the largest possible number of parts. [b]8.2[/b] Engineers always tell the truth, but businessmen always lie. F and G are engineers. A declares that, B asserts that, C asserts that, D says that, E insists that, F denies that G is an businessman. C also announces that D is a businessman. If A is a businessman, then how much total businessmen in this company? [b]8.3 [/b]There is a straight road through the field. A tourist stands on the road at a point ?. It can walk along the road at a speed of 6 km/h and across the field at a speed of 3 km/h. Find the locus of the points where the tourist can get there within an hour's walk. [b]8.4 / 7.5 [/b] Let $ [A]$ denote the largest integer not greater than $A$. Solve the equation: $[(5 + 6x)/8] = (15x-7)/5$ . [b]8.5.[/b] In some state, every two cities are connected by a road. Each road is only allowed to move in one direction. Prove that there is a city from which you can travel around everything. state, having visited each city exactly once. [b]8.6[/b] Find all eights of prime numbers such that the sum of the squares of the numbers in the eight is 992 less than their quadruple product. [hide=original wording]Найдите все восьмерки простых чисел такие, что сумма квадратов чисел в восьмерке на 992 меньше, чем их учетверенное произведение.[/hide] PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988081_1965_leningrad_math_olympiad]here[/url].

2021 Novosibirsk Oral Olympiad in Geometry, 3

Prove that in a triangle one of the sides is twice as large as the other if and only if a median and an angle bisector of this triangle are perpendicular

1994 All-Russian Olympiad, 2

Two circles $S_1$ and $S_2$ touch externally at $F$. their external common tangent touches $S_1$ at $A$ and $S_2$ at $B$. A line, parallel to $AB$ and tangent to $S_2$ at $C$, intersects $S_1$ at $D$ and $E$. Prove that points $A,F,C$ are collinear. (A. Kalinin)

2023 SG Originals, Q3

Let $n \geq 2$ be a positive integer. For a positive integer $a$, let $Q_a(x)=x^n+ax$. Let $p$ be a prime and let $S_a=\{b | 0 \leq b \leq p-1, \exists c \in \mathbb {Z}, Q_a(c) \equiv b \pmod p \}$. Show that $\frac{1}{p-1}\sum_{a=1}^{p-1}|S_a|$ is an integer.

2001 Miklós Schweitzer, 9

Let $H$ be the hyperbolic plane, $I(H)$ be the isometry group of $H$, and $O\in H$ be a fixed starting point. Determine those continuous $\sigma\colon H\rightarrow I(H)$ mappings that satisfty the following three conditions: (a) $\sigma(O)=\mathrm{id}$, and $\sigma (X)O=X$ for all $X\in H$; (b) for every $X\in H\backslash \{ O\}$ point, the $\sigma(X)$ isometry is a paracyclic shift, i.e. every member of a system of paracycles through a common infinitely far point is left invariant; (c) for any pair $P,Q\in H$ of points there exists a point $X\in H$ such that $\sigma(X)P=Q$. Prove that the $\sigma\colon H\rightarrow I(H)$ mappings satisfying the above conditions are differentiable with the exception of a point.

2022 Polish MO Finals, 3

One has marked $n$ points on a circle and has drawn a certain number of chords whose endpoints are the marked points. It turned out that the following property is satisfied: whenever any $2021$ drawn chords are removed one can join any two marked points by a broken line composed of some of the remaining drawn chords. Prove that one can remove some of the drawn chords so that at most $2022n$ chords remain and the property described above is preserved.

2014 Singapore Senior Math Olympiad, 35

Two circles intersect at the points $C$ and $D$. The straight lines $CD$ and $BYXA$ intersect at the point $Z$. Moreever, the straight line $WB$ is tangent to both of the circles. Suppose $ZX=ZY$ and $AB\cdot AX=100$. Find the value of $BW$.

PEN A Problems, 49

Prove that there is no positive integer $n$ such that, for $k=1, 2, \cdots, 9,$ the leftmost digit of $(n+k)!$ equals $k$.

2017 Bosnia and Herzegovina Team Selection Test, Problem 4

Let $n$ be a natural number. There are $6n + 4$ mathematicians at the conference. $2n+1$ meetings are held. On every meeting mathematicians are sitting at one table with $4$ chairs and $n$ tables with $6$ chairs. Distances between each two adjacent chairs are equal. Two mathematicians sit in $special$ position if they sit at the same table and they are adjacent or diametrically opposite. For which natural numbers $n$ is possible that after end of all meetings every 2 mathematicians are sitting at the $special$ position less than 2 times.

2009 Today's Calculation Of Integral, 450

Let $ a,\ b$ be postive real numbers. Find $ \lim_{n\to\infty} \sum_{k\equal{}1}^n \frac{n}{(k\plus{}an)(k\plus{}bn)}.$

2004 Irish Math Olympiad, 2

Each of the players in a tennis tournament played one match against each of the others. If every player won at least one match, show that there is a group A; B; C of three players for which A beat B, B beat C and C beat A.

2019 Korea USCM, 3

Two vector fields $\mathbf{F},\mathbf{G}$ are defined on a three dimensional region $W=\{(x,y,z)\in\mathbb{R}^3 : x^2+y^2\leq 1, |z|\leq 1\}$. $$\mathbf{F}(x,y,z) = (\sin xy, \sin yz, 0),\quad \mathbf{G} (x,y,z) = (e^{x^2+y^2+z^2}, \cos xz, 0)$$ Evaluate the following integral. \[\iiint_{W} (\mathbf{G}\cdot \text{curl}(\mathbf{F}) - \mathbf{F}\cdot \text{curl}(\mathbf{G})) dV\]

1990 Polish MO Finals, 3

In a tournament, every two of the $n$ players played exactly one match with each other (no draws). Prove that it is possible either (i) to partition the league in two groups $A$ and $B$ such that everybody in $A$ defeated everybody in $B$; or (ii) to arrange all the players in a chain $x_1, x_2, . . . , x_n, x_1$ in such a way that each player defeated his successor.

1966 IMO Longlists, 62

Solve the system of equations \[ |a_1-a_2|x_2+|a_1-a_3|x_3+|a_1-a_4|x_4=1 \] \[ |a_2-a_1|x_1+|a_2-a_3|x_3+|a_2-a_4|x_4=1 \] \[ |a_3-a_1|x_1+|a_3-a_2|x_2+|a_3-a_4|x_4=1 \] \[ |a_4-a_1|x_1+|a_4-a_2|x_2+|a_4-a_3|x_3=1 \] where $a_1, a_2, a_3, a_4$ are four different real numbers.

2012 Harvard-MIT Mathematics Tournament, 3

Tags: hmmt , function
Given points $a$ and $b$ in the plane, let $a\oplus b$ be the unique point $c$ such that $abc$ is an equilateral triangle with $a,b,c$ in the clockwise orientation. Solve $(x\oplus (0,0))\oplus(1,1)=(1,-1)$ for $x$.