Found problems: 85335
2016 Germany Team Selection Test, 3
Let $ABC$ be a triangle with $\angle{C} = 90^{\circ}$, and let $H$ be the foot of the altitude from $C$. A point $D$ is chosen inside the triangle $CBH$ so that $CH$ bisects $AD$. Let $P$ be the intersection point of the lines $BD$ and $CH$. Let $\omega$ be the semicircle with diameter $BD$ that meets the segment $CB$ at an interior point. A line through $P$ is tangent to $\omega$ at $Q$. Prove that the lines $CQ$ and $AD$ meet on $\omega$.
2015 JBMO TST - Turkey, 1
Let $p,q$ be prime numbers such that their sum isn't divisible by $3$. Find the all $(p,q,r,n)$ positive integer quadruples satisfy:
$$p+q=r(p-q)^n$$
[i]Proposed by Åžahin Emrah[/i]
2020 China Team Selection Test, 2
Given an isosceles triangle $\triangle ABC$, $AB=AC$. A line passes through $M$, the midpoint of $BC$, and intersects segment $AB$ and ray $CA$ at $D$ and $E$, respectively. Let $F$ be a point of $ME$ such that $EF=DM$, and $K$ be a point on $MD$. Let $\Gamma_1$ be the circle passes through $B,D,K$ and $\Gamma_2$ be the circle passes through $C,E,K$. $\Gamma_1$ and $\Gamma_2$ intersect again at $L \neq K$. Let $\omega_1$ and $\omega_2$ be the circumcircle of $\triangle LDE$ and $\triangle LKM$. Prove that, if $\omega_1$ and $\omega_2$ are symmetric wrt $L$, then $BF$ is perpendicular to $BC$.
2017 All-Russian Olympiad, 1
In country some cities are connected by oneway flights( There are no more then one flight between two cities). City $A$ called "available" for city $B$, if there is flight from $B$ to $A$, maybe with some transfers. It is known, that for every 2 cities $P$ and $Q$ exist city $R$, such that $P$ and $Q$ are available from $R$. Prove, that exist city $A$, such that every city is available for $A$.
1974 AMC 12/AHSME, 25
In parallelogram $ABCD$ of the accompanying diagram, line $DP$ is drawn bisecting $BC$ at $N$ and meeting $AB$ (extended) at $P$. From vertex $C$, line $CQ$ is drawn bisecting side $AD$ at $M$ and meeting $AB$ (extended) at $Q$. Lines $DP$ and $CQ$ meet at $O$. If the area of parallelogram $ABCD$ is $k$, then the area of the triangle $QPO$ is equal to
[asy]
size((400));
draw((0,0)--(5,0)--(6,3)--(1,3)--cycle);
draw((6,3)--(-5,0)--(10,0)--(1,3));
label("A", (0,0), S);
label("B", (5,0), S);
label("C", (6,3), NE);
label("D", (1,3), NW);
label("P", (10,0), E);
label("Q", (-5,0), W);
label("M", (.5,1.5), NW);
label("N", (5.65, 1.5), NE);
label("O", (3.4,1.75));
[/asy]
$ \textbf{(A)}\ k \qquad\textbf{(B)}\ \frac{6k}{5} \qquad\textbf{(C)}\ \frac{9k}{8} \qquad\textbf{(D)}\ \frac{5k}{4} \qquad\textbf{(E)}\ 2k $
2018 Canada National Olympiad, 4
Find all polynomials $p(x)$ with real coefficients that have the following property: there exists a polynomial $q(x)$ with real coefficients such that $$p(1) + p(2) + p(3) +\dots + p(n) = p(n)q(n)$$ for all positive integers $n$.
2021 Malaysia IMONST 2, 1
Given a circle with center $O$. Points $A$ and $B$ lie on the circle such that triangle $OBA$ is equilateral. Let $C$ be a point outside the circle with $\angle ACB = 45^{\circ}$. Line $CA$ intersects the circle at point $D$, and the line $CB$ intersects the circle at point $E$. Find $\angle DBE$.
2019 Kosovo National Mathematical Olympiad, 4
Find all sequence of consecutive positive numbers which the sum of them is equal with $2019$.
1994 Vietnam Team Selection Test, 2
Determine all functions $f: \mathbb{R} \mapsto \mathbb{R}$ satisfying
\[f\left(\sqrt{2} \cdot x\right) + f\left(4 + 3 \cdot \sqrt{2} \cdot x \right) = 2 \cdot f\left(\left(2 + \sqrt{2}\right) \cdot x\right)\]
for all $x$.
2014 Iran MO (3rd Round), 4
$D$ is an arbitrary point lying on side $BC$ of $\triangle{ABC}$. Circle $\omega_1$ is tangent to segments $AD$ , $BD$ and the circumcircle of $\triangle{ABC}$ and circle $\omega_2$ is tangent to segments $AD$ , $CD$ and the circumcircle of $\triangle{ABC}$. Let $X$ and $Y$ be the intersection points of $\omega_1$ and $\omega_2$ with $BC$ respectively and take $M$ as the midpoint of $XY$. Let $T$ be the midpoint of arc $BC$ which does not contain $A$. If $I$ is the incenter of $\triangle{ABC}$, prove that $TM$ goes through the midpoint of $ID$.
2005 Postal Coaching, 12
Let $ABC$ be a triangle with vertices at lattice points. Suppose one of its sides in $\sqrt{n}$, where $n$ is square-free. Prove that $\frac{R}{r}$ is irraational . The symbols have usual meanings.
2017 AMC 8, 21
Suppose $a$, $b$, and $c$ are nonzero real numbers, and $a+b+c=0$. What are the possible value(s) for $\frac{a}{|a|}+\frac{b}{|b|}+\frac{c}{|c|}+\frac{abc}{|abc|}$?
$\textbf{(A) }0\qquad\textbf{(B) }1\text{ and }-1\qquad\textbf{(C) }2\text{ and }-2\qquad\textbf{(D) }0,2,\text{ and }-2\qquad\textbf{(E) }0,1,\text{ and }-1$
2005 China Girls Math Olympiad, 5
Let $ x$ and $ y$ be positive real numbers with $ x^3 \plus{} y^3 \equal{} x \minus{} y.$ Prove that \[ x^2 \plus{} 4y^2 < 1.\]
2007 Harvard-MIT Mathematics Tournament, 9
$g$ is a twice differentiable function over the positive reals such that \begin{align}g(x)+2x^3g^\prime(x)+x^4g^{\prime\prime}(x)&= 0 \qquad\text{ for all positive reals } x\\\lim_{x\to\infty}xg(x)&=1\end{align}
Find the real number $\alpha>1$ such that $g(\alpha)=1/2$.
2016 AMC 12/AHSME, 19
Jerry starts at 0 on the real number line. He tosses a fair coin 8 times. When he gets heads, he moves 1 unit in the positive direction; when he gets tails, he moves 1 unit in the negative direction. The probability that he reaches 4 at some time during this process is $a/b$, where $a$ and $b$ are relatively prime positive integers. What is $a+b$? (For example, he succeeds if his sequence of tosses is $HTHHHHHH$.)
$\textbf{(A)}\ 69\qquad\textbf{(B)}\ 151\qquad\textbf{(C)}\ 257\qquad\textbf{(D)}\ 293\qquad\textbf{(E)}\ 313$
2010 Princeton University Math Competition, 2
Let $f(n)$ be the sum of the digits of $n$. Find $\displaystyle{\sum_{n=1}^{99}f(n)}$.
1961 AMC 12/AHSME, 7
When simplified, the third term in the expansion of $\left(\frac{a}{\sqrt{x}}-\frac{\sqrt{x}}{a^2}\right)^6$ is:
${{ \textbf{(A)}\ \frac{15}{x}\qquad\textbf{(B)}\ -\frac{15}{x}\qquad\textbf{(C)}\ -\frac{6x^2}{a^9} \qquad\textbf{(D)}\ \frac{20}{a^3} }\qquad\textbf{(E)}\ -\frac{20}{a^3} } $
2022 MIG, 1
What is $4^0 - 3^1 - 2^2 - 1^3$?
$\textbf{(A) }{-}8\qquad\textbf{(B) }{-}7\qquad\textbf{(C) }{-}5\qquad\textbf{(D) }4\qquad\textbf{(E) }5$
2022 Saudi Arabia IMO TST, 1
Which positive integers $n$ make the equation \[\sum_{i=1}^n \sum_{j=1}^n \left\lfloor \frac{ij}{n+1} \right\rfloor=\frac{n^2(n-1)}{4}\] true?
2018 MIG, 17
Two standard six sided dice labeled with the numbers $1$-$6$ are rolled, and the numbers that come up are multiplied. What is the probability that their product is a multiple of five?
$\textbf{(A) } \dfrac14\qquad\textbf{(B) } \dfrac5{18}\qquad\textbf{(C) } \dfrac{11}{36}\qquad\textbf{(D) } \dfrac13\qquad\textbf{(E) } \dfrac49$
1992 Mexico National Olympiad, 4
Show that $1 + 11^{11} + 111^{111} + 1111^{1111} +...+ 1111111111^{1111111111}$ is divisible by $100$.
2008 Putnam, A2
Alan and Barbara play a game in which they take turns filling entries of an initially empty $ 2008\times 2008$ array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?
2014 AMC 12/AHSME, 10
Danica drove her new car on a trip for a whole number of hours, averaging $55$ miles per hour. At the beginning of the trip, $abc$ miles were displayed on the odometer, where $abc$ is a 3-digit number with $a \ge 1$ and $a+b+c \le 7$. At the end of the trip, where the odometer showed $cba$ miles. What is $a^2+b^2+c^2$?
$ \textbf{(A) } 26 \qquad\textbf{(B) }27\qquad\textbf{(C) }36\qquad\textbf{(D) }37\qquad\textbf{(E) }41\qquad $
2002 Moldova National Olympiad, 1
Before going to vacation, each of the $ 7$ pupils decided to send to each of the $ 3$ classmates one postcard. Is it possible that each student receives postcards only from the classmates he has sent postcards?
Durer Math Competition CD Finals - geometry, 2018.C+1
Prove that you can select two adjacent sides of any quadrilateral and supplement them in order to create a parallelogram, the resulting parallelogram contains the original quadrilateral .