Found problems: 85335
1986 IMO Longlists, 8
A tetrahedron $ABCD$ is given such that $AD = BC = a; AC = BD = b; AB\cdot CD = c^2$. Let $f(P) = AP + BP + CP + DP$, where $P$ is an arbitrary point in space. Compute the least value of $f(P).$
2018 Brazil Team Selection Test, 1
Let $H$ be the orthocenter of the triangle $ABC$. Let $M$ and $N$ be the midpoints of the sides $AB$ and $AC$, respectively. Assume that $H$ lies inside the quadrilateral $BMNC$ and that the circumcircles of triangles $BMH$ and $CNH$ are tangent to each other. The line through $H$ parallel to $BC$ intersects the circumcircles of the triangles $BMH$ and $CNH$ in the points $K$ and $L$, respectively. Let $F$ be the intersection point of $MK$ and $NL$ and let $J$ be the incenter of triangle $MHN$. Prove that $F J = F A$.
Oliforum Contest II 2009, 5
Let $ X: \equal{} \{x_1,x_2,\ldots,x_{29}\}$ be a set of $ 29$ boys: they play with each other in a tournament of Pro Evolution Soccer 2009, in respect of the following rules:
[list]i) every boy play one and only one time against each other boy (so we can assume that every match has the form $ (x_i \text{ Vs } x_j)$ for some $ i \neq j$);
ii) if the match $ (x_i \text{ Vs } x_j)$, with $ i \neq j$, ends with the win of the boy $ x_i$, then $ x_i$ gains $ 1$ point, and $ x_j$ doesn’t gain any point;
iii) if the match $ (x_i \text{ Vs } x_j)$, with $ i \neq j$, ends with the parity of the two boys, then $ \frac {1}{2}$ point is assigned to both boys.
[/list]
(We assume for simplicity that in the imaginary match $ (x_i \text{ Vs } x_i)$ the boy $ x_i$ doesn’t gain any point).
Show that for some positive integer $ k \le 29$ there exist a set of boys $ \{x_{t_1},x_{t_2},\ldots,x_{t_k}\} \subseteq X$ such that, for all choice of the positive integer $ i \le 29$, the boy $ x_i$ gains always a integer number of points in the total of the matches $ \{(x_i \text{ Vs } x_{t_1}),(x_i \text{ Vs } x_{t_2}),\ldots, (x_i \text{ Vs } x_{t_k})\}$.
[i](Paolo Leonetti)[/i]
2019 Israel Olympic Revenge, P3
Let $ABCD$ be a circumscribed quadrilateral, assume $ABCD$ is not a kite. Denote the circumcenters of triangle $ABC,BCD,CDA,DAB$ by $O_D,O_A,O_B,O_C$ respectively.
a. Prove that $O_AO_BO_CO_D$ is circumscribed.
b. Let the angle bisector of $\angle BAD$ intersect the angle bisector of $\angle O_BO_AO_D$ in $X$. Similarly define the points $Y,Z,W$. Denote the incenters of $ABCD, O_AO_BO_CO_D$ by $I,J$ respectively. Express the angles $\angle ZYJ,\angle XYI$ in terms of angles of quadrilateral $ABCD$.
1998 Miklós Schweitzer, 2
For any polynomial f, denote by $P_f$ the number of integers n for which f(n) is a (positive) prime number. Let $q_d = max P_f$ , where f runs over all polynomials with integer coefficients with degree d and reducible over $\mathbb{Q}$. Prove that $\forall d\geq 2$ , $q_d = d$.
2013 European Mathematical Cup, 3
We call a sequence of $n$ digits one or zero a code. Subsequence of a code is a palindrome if it is the same after we reverse the order of its digits. A palindrome is called nice if its digits occur consecutively in the code. (Code $(1101)$ contains $10$ palindromes, of which $6$ are nice.)
a) What is the least number of palindromes in a code?
b) What is the least number of nice palindromes in a code?
1999 India Regional Mathematical Olympiad, 6
Find all solutions in integers $m,n$ of the equation \[ (m-n)^2 = \frac{4mn}{ m+n-1}. \]
2010 Victor Vâlcovici, 2
$ \sum_{cyc}\frac{1}{\left(\text{tg} y+\text{tg} z\right) \text{cos}^2 x} \ge 3, $ for any $ x,y,z\in (0,\pi/2) $
[i]Carmen[/i] and [i]Viorel Botea[/i]
2021 Indonesia MO, 1
On the whiteboard, the numbers are written sequentially: $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9$. Andi has to paste a $+$ (plus) sign or $-$ (minus) sign in between every two successive numbers, and compute the value. Determine the least odd positive integer that Andi can't get from this process.
Kyiv City MO Seniors 2003+ geometry, 2013.11.3
The segment $AB$ is the diameter of the circle. The points $M$ and $C$ belong to this circle and are located in different half-planes relative to the line $AB$. From the point $M$ the perpendiculars $MN$ and $MK$ are drawn on the lines $AB$ and $AC$, respectively. Prove that the line $KN$ intersects the segment $CM$ in its midpoint.
(Igor Nagel)
1975 Miklós Schweitzer, 1
Show that there exists a tournament $ (T,\rightarrow)$ of cardinality $ \aleph_1$ containing no transitive subtournament of size $ \aleph_1$. ( A structure $ (T,\rightarrow)$ is a $ \textit{tournament}$ if $ \rightarrow$ is a binary, irreflexive, asymmetric and trichotomic relation. The tournament $ (T,\rightarrow)$ is transitive if $ \rightarrow$ is transitive, that is, if it orders $ T$.)
[i]A. Hajnal[/i]
2014 ELMO Shortlist, 9
Let $d$ be a positive integer and let $\varepsilon$ be any positive real. Prove that for all sufficiently large primes $p$ with $\gcd(p-1,d) \neq 1$, there exists an positive integer less than $p^r$ which is not a $d$th power modulo $p$, where $r$ is defined by \[ \log r = \varepsilon - \frac{1}{\gcd(d,p-1)}. \][i]Proposed by Shashwat Kishore[/i]
2010 Korea - Final Round, 5
On a circular table are sitting $ 2n$ people, equally spaced in between. $ m$ cookies are given to these people, and they give cookies to their neighbors according to the following rule.
(i) One may give cookies only to people adjacent to himself.
(ii) In order to give a cookie to one's neighbor, one must eat a cookie.
Select arbitrarily a person $ A$ sitting on the table. Find the minimum value $ m$ such that there is a strategy in which $ A$ can eventually receive a cookie, independent of the distribution of cookies at the beginning.
1966 Leningrad Math Olympiad, grade 6
[b]6.1[/b] Which number is greater
$$\underbrace{1000. . . 001}_{1965\, zeroes}
/ \underbrace{1000 . . . 001}_{1966\, zeroes}
\,\,\,
or \,\,\, \underbrace{1000. . . 001}_{1966\, zeroes}
/ \underbrace{1000 . . . 001}_{1967\, zeroes} \,\,?$$
[b]6.2[/b] $30$ teams participate in the football championship. Prove that at any moment there will be two teams that have played at this point the same number of matches.
[b]6.3./ 7.1 [/b] All integers from $1$ to $1966$ are written on the board. Allowed is to erase any two numbers by writing their difference instead. Prove that repeating such an operation many times cannot ensure that There are only zeros left on the board.
[b]6.4 / 7.5[/b] Black paint was sprayed onto a white surface. Prove that there are three points of the same color lying on the same line, and so, that one of the points lies in the middle between the other two.
[b]6.5[/b] In a chess tournament, there are more than three chess players, and each player plays each other the same number of times. There were $26$ rounds in the tournament. After the $13$th round, one of the participants discovered that he had an odd number points, and each of the other participants has an even number of points. How many chess players participated in the tournament?
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988082_1966_leningrad_math_olympiad]here[/url].
2024 European Mathematical Cup, 4
Let $\mathcal{F}$ be a family of (distinct) subsets of the set $\{1,2,\dots,n\}$ such that for all $A$, $B\in \mathcal{F}$,we have that $A^C\cup B\in \mathcal{F}$, where $A^C$ is the set of all members of ${1,2,\dots,n}$ that are not in $A$.
Prove that every $k\in {1,2,\dots,n}$ appears in at least half of the sets in $\mathcal{F}$.
[i]Stijn Cambie, Mohammad Javad Moghaddas Mehr[/i]
2020 Australian Maths Olympiad, 7
A $\emph{tetromino tile}$ is a tile that can be formed by gluing together four unit square tiles, edge to edge. For each positive integer $\emph{n}$, consider a bathroom whose floor is in the shape of a $2\times2 n$ rectangle. Let $T_n$ be the number of ways to tile this bathroom floor with tetromino tiles. For example, $T_2 = 4$ since there are four ways to tile a $2\times4$ rectangular bathroom floor with tetromino tiles, as shown below.
[click for diagram]
Prove that each of the numbers $T_1, T_2, T_3, ...$ is a perfect square.
2014 Thailand Mathematical Olympiad, 7
Let $ABCD$ be a convex quadrilateral with shortest side $AB$ and longest side $CD$, and suppose that $AB < CD$. Show that there is a point $E \ne C, D$ on segment $CD$ with the following property:
For all points $P \ne E$ on side $CD$, if we define $O_1$ and $O_2$ to be the circumcenters of $\vartriangle APD$ and $\vartriangle BPE$ respectively, then the length of $O_1O_2$ does not depend on $P$.
Estonia Open Junior - geometry, 2003.2.2
The shape of a dog kennel from above is an equilateral triangle with side length $1$ m and its corners in points $A, B$ and $C$, as shown in the picture. The chain of the dog is of length $6$ m and its end is fixed to the corner in point $A$. The dog himself is in point $K$ in a way that the chain is tight and points $K, A$ and $B$ are on the same straight line. The dog starts to move clockwise around the kennel, holding the chain tight all the time. How long is the walk of the dog until the moment when the chain is tied round the kennel at full?
[img]https://cdn.artofproblemsolving.com/attachments/9/5/616f8adfe66e2eb60f1a6c3f26e652c45f3e27.png[/img]
2004 IMC, 1
Let $S$ be an infinite set of real numbers such that $|x_1+x_2+\cdots + x_n | \leq 1 $ for all finite subsets $\{x_1,x_2,\ldots,x_n\} \subset S$. Show that $S$ is countable.
Kyiv City MO Juniors Round2 2010+ geometry, 2021.9.2
In an acute triangle $AB$ the heights $ BE$ and $CF$ intersect at the orthocenter $H$, and $M$ is the midpoint of $BC$. The line $EF$ intersects the lines $MH$ and $BC$ at the points $P$ and $T$ , respectively. $AP$ intersects the cirumcscribed circle of $\vartriangle ABC$ for second time at the point $Q$ . Prove that $\angle AQT= 90^o$.
(Fedir Yudin)
2023 IMO, 2
Let $ABC$ be an acute-angled triangle with $AB < AC$. Let $\Omega$ be the circumcircle of $ABC$. Let $S$ be the midpoint of the arc $CB$ of $\Omega$ containing $A$. The perpendicular from $A$ to $BC$ meets $BS$ at $D$ and meets $\Omega$ again at $E \neq A$. The line through $D$ parallel to $BC$ meets line $BE$ at $L$. Denote the circumcircle of triangle $BDL$ by $\omega$. Let $\omega$ meet $\Omega$ again at $P \neq B$. Prove that the line tangent to $\omega$ at $P$ meets line $BS$ on the internal angle bisector of $\angle BAC$.
2006 AMC 12/AHSME, 13
Rhombus $ ABCD$ is similar to rhombus $ BFDE$. The area of rhombus $ ABCD$ is 24, and $ \angle BAD \equal{} 60^\circ$. What is the area of rhombus $ BFDE$?
[asy]
size(180);
defaultpen(linewidth(0.7)+fontsize(11));
pair A=origin, B=(2,0), C=(3, sqrt(3)), D=(1, sqrt(3)), E=(1, 1/sqrt(3)), F=(2, 2/sqrt(3));
pair point=(3/2, sqrt(3)/2);
draw(B--C--D--A--B--F--D--E--B);
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$F$", F, dir(point--F));[/asy]
$ \textbf{(A) } 6 \qquad \textbf{(B) } 4\sqrt {3} \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 6\sqrt {3}$
1967 AMC 12/AHSME, 4
Given $\frac{\log{a}}{p}=\frac{\log{b}}{q}=\frac{\log{c}}{r}=\log{x}$, all logarithms to the same base and $x \not= 1$. If $\frac{b^2}{ac}=x^y$, then $y$ is:
$ \text{(A)}\ \frac{q^2}{p+r}\qquad\text{(B)}\ \frac{p+r}{2q}\qquad\text{(C)}\ 2q-p-r\qquad\text{(D)}\ 2q-pr\qquad\text{(E)}\ q^2-pr$
Swiss NMO - geometry, 2022.8
Let $ABC$ be a triangle and let $P$ be a point in the interior of the side $BC$. Let $I_1$ and $I_2$ be the incenters of the triangles $AP B$ and $AP C$, respectively. Let $X$ be the closest point to $A$ on the line $AP$ such that $XI_1$ is perpendicular to $XI_2$. Prove that the distance $AX$ is independent of the choice of $P$.
2004 Bulgaria Team Selection Test, 2
Prove that if $a,b,c \ge 1$ and $a+b+c=9$, then $\sqrt{ab+bc+ca} \le \sqrt{a} +\sqrt{b} + \sqrt{c}$