This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1976 IMO Longlists, 19

For a positive integer $n$, let $6^{(n)}$ be the natural number whose decimal representation consists of $n$ digits $6$. Let us define, for all natural numbers $m$, $k$ with $1 \leq k \leq m$ \[\left[\begin{array}{ccc}m\\ k\end{array}\right] =\frac{ 6^{(m)} 6^{(m-1)}\cdots 6^{(m-k+1)}}{6^{(1)} 6^{(2)}\cdots 6^{(k)}} .\] Prove that for all $m, k$, $ \left[\begin{array}{ccc}m\\ k\end{array}\right] $ is a natural number whose decimal representation consists of exactly $k(m + k - 1) - 1$ digits.

2013 Iran MO (3rd Round), 1

Let $p$ a prime number and $d$ a divisor of $p-1$. Find the product of elements in $\mathbb Z_p$ with order $d$. ($\mod p$). (10 points)

1976 Yugoslav Team Selection Test, Problem 2

Assume that $2n+1$ positive integers satisfy the following: If we remove any of these integers, the remaining $2n$ integers can be partitioned in two groups of $n$ numbers in each, such that the sum of the numbers in one group is equal to the sum of the numbers in the other. Prove that all of these numbers must be equal.

1977 IMO Longlists, 43

Tags:
Evaluate \[S=\sum_{k=1}^n k(k+1)\ldots (k+p), \] where $n$ and $p$ are positive integers.

2018 Romanian Master of Mathematics Shortlist, C3

$N$ teams take part in a league. Every team plays every other team exactly once during the league, and receives 2 points for each win, 1 point for each draw, and 0 points for each loss. At the end of the league, the sequence of total points in descending order $\mathcal{A} = (a_1 \ge a_2 \ge \cdots \ge a_N )$ is known, as well as which team obtained which score. Find the number of sequences $\mathcal{A}$ such that the outcome of all matches is uniquely determined by this information. [I]Proposed by Dominic Yeo, United Kingdom.[/i]

2017 Junior Balkan MO, 1

Determine all the sets of six consecutive positive integers such that the product of some two of them . added to the product of some other two of them is equal to the product of the remaining two numbers.

2013 Olympic Revenge, 5

Consider $n$ lamps clockwise numbered from $1$ to $n$ on a circle. Let $\xi$ to be a configuration where $0 \le \ell \le n$ random lamps are turned on. A [i]cool procedure[/i] consists in perform, simultaneously, the following operations: for each one of the $\ell$ lamps which are turned on, we verify the number of the lamp; if $i$ is turned on, a [i]signal[/i] of range $i$ is sent by this lamp, and it will be received only by the next $i$ lamps which follow $i$, turned on or turned off, also considered clockwise. At the end of the operations we verify, for each lamp, turned on or turned off, how many signals it has received. If it was reached by an even number of signals, it remains on the same state(that is, if it was turned on, it will be turned on; if it was turned off, it will be turned off). Otherwise, it's state will be changed. The example in attachment, for $n=4$, ilustrates a configuration where lamps $2$ and $4$ are initially turned on. Lamp $2$ sends signal only for the lamps $3$ e $4$, while lamp $4$ sends signal for lamps $1$, $2$, $3$ e $4$. Therefore, we verify that lamps $1$ e $2$ received only one signal, while lamps $3$ e $4$ received two signals. Therefore, in the next configuration, lamps $1$ e $4$ will be turned on, while lamps $2$ e $3$ will be turned off. Let $\Psi$ to be the set of all $2^n$ possible configurations, where $0 \le \ell \le n$ random lamps are turned on. We define a function $f: \Psi \rightarrow \Psi$ where, if $\xi$ is a configuration of lamps, then $f(\xi)$ is the configurations obtained after we perform the [i]cool procedure[/i] described above. Determine all values of $n$ for which $f$ is bijective.

2024 AMC 8 -, 22

Tags:
A roll of tape is $4$ inches in diameter and is wrapped around a ring that is $2$ inches in diameter. A cross section of the tape is shown in the figure below. The tape is $0.015$ inches thick. If the tape is completely unrolled, approximately how long would it be? Round your answer to the nearest $100$ inches. [asy] /* AMC8 P22 2024, revised by Teacher David */ size(120); pair o = (0,0); real r1 = 1; real r2 = 2; filldraw(circle(o, r2), mediumgray, linewidth(1pt)); filldraw(circle(o, r1), white, linewidth(1pt)); draw((-2,-2.6)--(-2,-2.4)); draw((2,-2.6)--(2,-2.4)); draw((-2,-2.5)--(2,-2.5), L=Label("4 in.")); draw((-1,0)--(1,0), L=Label("2 in.", align=(0,1)), arrow=Arrows()); draw((2,0)--(2,-1.3), linewidth(1pt)); [/asy] $\textbf{(A) } 300\qquad\textbf{(B) } 600\qquad\textbf{(C) } 1200\qquad\textbf{(D) } 1500\qquad\textbf{(E) } 1800$

2015 Singapore MO Open, 1

Tags: geometry
In an acute-angled triangle $\triangle ABC$, D is the point on BC such that AD bisects ∠BAC, E and F are the feet of the perpendiculars from D onto AB and AC respectively. The segments BF and CE intersect at K. Prove that AK is perpendicular to BC.

2006 Hanoi Open Mathematics Competitions, 1

Tags:
What is the last three digits of the sum 11! + 12! + 13! +    + 2006!

2020 Stanford Mathematics Tournament, 4

Tags: geometry
Let $ABCD$ be a quadrilateral such that $AB = BC = 13$, $CD = DA = 15$ and $AC = 24$. Let the midpoint of $AC$ be $E$. What is the area of the quadrilateral formed by connecting the incenters of $ABE$, $BCE$, $CDE$, and $DAE$?

Mid-Michigan MO, Grades 5-6, 2023

[b]p1.[/b] Solve: $INK + INK + INK + INK + INK + INK = PEN$ ($INK$ and $PEN$ are $3$-digit numbers, and different letters stand for different digits). [b]p2. [/b]Two people play a game. They put $3$ piles of matches on the table: the first one contains $1$ match, the second one $3$ matches, and the third one $4$ matches. Then they take turns making moves. In a move, a player may take any nonzero number of matches FROM ONE PILE. The player who takes the last match from the table loses the game. a) The player who makes the first move can win the game. What is the winning first move? b) How can he win? (Describe his strategy.) [b]p3.[/b] The planet Naboo is under attack by the imperial forces. Three rebellion camps are located at the vertices of a triangle. The roads connecting the camps are along the sides of the triangle. The length of the first road is less than or equal to $20$ miles, the length of the second road is less than or equal to $30$ miles, and the length of the third road is less than or equal to $45$ miles. The Rebels have to cover the area of this triangle with a defensive field. What is the maximal area that they may need to cover? [b]p4.[/b] Money in Wonderland comes in $\$5$ and $\$7$ bills. What is the smallest amount of money you need to buy a slice of pizza that costs $\$ 1$ and get back your change in full? (The pizza man has plenty of $\$5$ and $\$7$ bills.) For example, having $\$7$ won't do, since the pizza man can only give you $\$5$ back. [b]p5.[/b] (a) Put $5$ points on the plane so that each $3$ of them are vertices of an isosceles triangle (i.e., a triangle with two equal sides), and no three points lie on the same line. (b) Do the same with $6$ points. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1987 IMO Longlists, 48

Find the number of partitions of the set $\{1, 2, \cdots, n\}$ into three subsets $A_1,A_2,A_3$, some of which may be empty, such that the following conditions are satisfied: $(i)$ After the elements of every subset have been put in ascending order, every two consecutive elements of any subset have different parity. $(ii)$ If $A_1,A_2,A_3$ are all nonempty, then in exactly one of them the minimal number is even . [i]Proposed by Poland.[/i]

LMT Team Rounds 2021+, B5

Find the number of ways there are to permute the elements of the set $\{1,2,3,4,5,6,7,8,9\}$ such that no two adjacent numbers are both even or both odd. [i]Proposed by Ephram Chun[/i]

2000 Belarus Team Selection Test, 8.3

Prove that the set of positive integers cannot be partitioned into three nonempty subsets such that, for any two integers $x,y$ taken from two different subsets, the number $x^2-xy+y^2$ belongs to the third subset.

2014 USAMTS Problems, 4:

A point $P$ in the interior of a convex polyhedron in Euclidean space is called a [i]pivot point[/i] of the polyhedron if every line through $P$ contains exactly $0$ or $2$ vertices of the polyhedron. Determine, with proof, the maximum number of pivot points that a polyhedron can contain.

1995 Belarus Team Selection Test, 1

Prove that the number of odd coefficients in the polynomial $(1+x)^n$ is a power of $2$ for every positive integer $N$

1998 Denmark MO - Mohr Contest, 5

A neat fruit arrangement on a large round dish is edged with strawberries. Between $100$ and $200$ berries are used for this border. A deliciously hungry child eats first one of the strawberries and then starts going round and round the dish, she eats strawberries in the following way: When she has eaten a berry, she leaves it next lie, then she eats the next, leaves the next, etc. Thus she continues until there is only one strawberry left. This berry is the one that was lying right after the very first thing she ate. How many berries were there originally?

2012 Bosnia Herzegovina Team Selection Test, 2

Prove for all positive real numbers $a,b,c$, such that $a^2+b^2+c^2=1$: \[\frac{a^3}{b^2+c}+\frac{b^3}{c^2+a}+\frac{c^3}{a^2+b}\ge \frac{\sqrt{3}}{1+\sqrt{3}}.\]

2018 USA TSTST, 6

Let $S = \left\{ 1, \dots, 100 \right\}$, and for every positive integer $n$ define \[ T_n = \left\{ (a_1, \dots, a_n) \in S^n \mid a_1 + \dots + a_n \equiv 0 \pmod{100} \right\}. \] Determine which $n$ have the following property: if we color any $75$ elements of $S$ red, then at least half of the $n$-tuples in $T_n$ have an even number of coordinates with red elements. [i]Ray Li[/i]

2010 Princeton University Math Competition, 7

Square $ABCD$ is divided into four rectangles by $EF$ and $GH$. $EF$ is parallel to $AB$ and $GH$ parallel to $BC$. $\angle BAF = 18^\circ$. $EF$ and $GH$ meet at point $P$. The area of rectangle $PFCH$ is twice that of rectangle $AGPE$. Given that the value of $\angle FAH$ in degrees is $x$, find the nearest integer to $x$. [asy] size(100); defaultpen(linewidth(0.7)+fontsize(10)); pair D2(pair P) { dot(P,linewidth(3)); return P; } // NOTE: I've tampered with the angles to make the diagram not-to-scale. The correct numbers should be 72 instead of 76, and 45 instead of 55. pair A=(0,1), B=(0,0), C=(1,0), D=(1,1), F=intersectionpoints(A--A+2*dir(-76),B--C)[0], H=intersectionpoints(A--A+2*dir(-76+55),D--C)[0], E=F+(0,1), G=H-(1,0), P=intersectionpoints(E--F,G--H)[0]; draw(A--B--C--D--cycle); draw(F--A--H); draw(E--F); draw(G--H); label("$A$",D2(A),NW); label("$B$",D2(B),SW); label("$C$",D2(C),SE); label("$D$",D2(D),NE); label("$E$",D2(E),plain.N); label("$F$",D2(F),S); label("$G$",D2(G),W); label("$H$",D2(H),plain.E); label("$P$",D2(P),SE); [/asy]

2005 Turkey Team Selection Test, 3

Initially the numbers 1 through 2005 are marked. A finite set of marked consecutive integers is called a block if it is not contained in any larger set of marked consecutive integers. In each step we select a set of marked integers which does not contain the first or last element of any block, unmark the selected integers, and mark the same number of consecutive integers starting with the integer two greater than the largest marked integer. What is the minimum number of steps necessary to obtain 2005 single integer blocks?

2013 Harvard-MIT Mathematics Tournament, 34

Tags: hmmt
For how many unordered sets $\{a,b,c,d\}$ of positive integers, none of which exceed $168$, do there exist integers $w,x,y,z$ such that $(-1)^wa+(-1)^xb+(-1)^yc+(-1)^zd=168$? If your answer is $A$ and the correct answer is $C$, then your score on this problem will be $\left\lfloor25e^{-3\frac{|C-A|}C}\right\rfloor$.

2019 Simon Marais Mathematical Competition, A1

Consider the sequence of positive integers defined by $s_1,s_2,s_3, \dotsc $ of positive integers defined by [list] [*]$s_1=2$, and[/*] [*]for each positive integer $n$, $s_{n+1}$ is equal to $s_n$ plus the product of prime factors of $s_n$.[/*] [/list] The first terms of the sequence are $2,4,6,12,18,24$. Prove that the product of the $2019$ smallest primes is a term of the sequence.

2025 Harvard-MIT Mathematics Tournament, 5

Tags: team
Let $\triangle{ABC}$ be an acute triangle with orthocenter $H.$ Points $E$ and $F$ are on segments $\overline{AC}$ and $\overline{AB},$ respectively, such that $\angle{EHF}=90^\circ.$ Let $X$ be the foot of the perpendicular from $H$ to $\overline{EF}.$ Prove that $\angle{BXC}=90^\circ.$