Found problems: 85335
2015 Peru IMO TST, 12
Find the least positive real number $\alpha$ with the following property: if the weight of a finite number of pumpkins is $1$ ton and the weight of each pumpkin is not greater than $\alpha$ tons then the pumpkins can be distributed in $50$ boxes (some boxes can be empty) so that there is no more than $\alpha$ tons of pumpkins in each box.
2023 ELMO Shortlist, A2
Let \(\mathbb R_{>0}\) denote the set of positive real numbers. Find all functions \(f:\mathbb R_{>0}\to\mathbb R_{>0}\) such that for all positive real numbers \(x\) and \(y\), \[f(xy+1)=f(x)f\left(\frac1x+f\left(\frac1y\right)\right).\]
[i]Proposed by Luke Robitaille[/i]
1984 Czech And Slovak Olympiad IIIA, 3
Let the sequence $\{a_n\}$ , $n \ge 0$ satisfy the recurrence relation
$$a_{n + 2} =4a_{n + 1}-3a_n, \ \ (1) $$
Let us define the sequence $\{b_n\}$ , $n \ge 1$ by the relation
$$b_n= \left[ \frac{a_{n+1}}{a_{n-1}} \right]$$
where we put $b_n =1$ for $a_{n-1}=0$. Prove that, starting from a certain term, the sequence also satisfies the recurrence relation (1).
Note: $[x]$ indicates the whole part of the number $x$.
1990 IMO Longlists, 32
Using following five figures, can a parallelepiped be constructed, whose side lengths are all integers larger than $1$ and has volume $1990$ ? (In the figure, every square represents a unit cube.)
\[\text{Squares are the same and all are } \Huge{1 \times 1}\]
[asy]
import graph; size(400); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1);
draw((2,4)--(0,4),linewidth(2pt)); draw((0,4)--(0,0),linewidth(2pt)); draw((0,0)--(2,0),linewidth(2pt)); draw((2,0)--(2,1),linewidth(2pt)); draw((2,1)--(0,1),linewidth(2pt)); draw((1,0)--(1,4),linewidth(2pt)); draw((2,4)--(2,3),linewidth(2pt)); draw((2,3)--(0,3),linewidth(2pt)); draw((0,2)--(1,2),linewidth(2pt));
label("(1)", (0.56,-1.54), SE*lsf); draw((4,2)--(4,1),linewidth(2pt)); draw((7,2)--(7,1),linewidth(2pt)); draw((4,2)--(7,2),linewidth(2pt)); draw((4,1)--(7,1),linewidth(2pt)); draw((6,0)--(6,3),linewidth(2pt)); draw((5,3)--(5,0),linewidth(2pt)); draw((5,0)--(6,0),linewidth(2pt)); draw((5,3)--(6,3),linewidth(2pt)); label("(2)", (5.13,-1.46), SE*lsf); draw((9,0)--(9,3),linewidth(2pt)); draw((10,3)--(10,0),linewidth(2pt)); draw((12,3)--(12,0),linewidth(2pt)); draw((11,0)--(11,3),linewidth(2pt)); draw((9,2)--(12,2),linewidth(2pt)); draw((12,1)--(9,1),linewidth(2pt)); draw((9,3)--(10,3),linewidth(2pt)); draw((11,3)--(12,3),linewidth(2pt)); draw((12,0)--(11,0),linewidth(2pt)); draw((9,0)--(10,0),linewidth(2pt)); label("(3)", (10.08,-1.48), SE*lsf); draw((14,1)--(17,1),linewidth(2pt)); draw((15,2)--(17,2),linewidth(2pt)); draw((15,2)--(15,0),linewidth(2pt)); draw((15,0)--(14,0)); draw((14,1)--(14,0),linewidth(2pt)); draw((16,2)--(16,0),linewidth(2pt)); label("(4)", (15.22,-1.5), SE*lsf); draw((14,0)--(16,0),linewidth(2pt)); draw((17,2)--(17,1),linewidth(2pt)); draw((19,3)--(19,0),linewidth(2pt)); draw((20,3)--(20,0),linewidth(2pt)); draw((20,3)--(19,3),linewidth(2pt)); draw((19,2)--(20,2),linewidth(2pt)); draw((19,1)--(20,1),linewidth(2pt)); draw((20,0)--(19,0),linewidth(2pt)); label("(5)", (19.11,-1.5), SE*lsf); dot((0,0),ds); dot((0,1),ds); dot((0,2),ds); dot((0,3),ds); dot((0,4),ds); dot((1,4),ds); dot((2,4),ds); dot((2,3),ds); dot((1,3),ds); dot((1,2),ds); dot((1,1),ds); dot((2,1),ds); dot((2,0),ds); dot((1,0),ds); dot((5,0),ds); dot((6,0),ds); dot((5,1),ds); dot((6,1),ds); dot((5,2),ds); dot((6,2),ds); dot((5,3),ds); dot((6,3),ds); dot((7,2),ds); dot((7,1),ds); dot((4,1),ds); dot((4,2),ds); dot((9,0),ds); dot((9,1),ds); dot((9,2),ds); dot((9,3),ds); dot((10,0),ds); dot((11,0),ds); dot((12,0),ds); dot((10,1),ds); dot((10,2),ds); dot((10,3),ds); dot((11,1),ds); dot((11,2),ds); dot((11,3),ds); dot((12,1),ds); dot((12,2),ds); dot((12,3),ds); dot((14,0),ds); dot((15,0),ds); dot((16,0),ds); dot((15,1),ds); dot((14,1),ds); dot((16,1),ds); dot((15,2),ds); dot((16,2),ds); dot((17,2),ds); dot((17,1),ds); dot((19,0),ds); dot((20,0),ds); dot((19,1),ds); dot((20,1),ds); dot((19,2),ds); dot((20,2),ds); dot((19,3),ds); dot((20,3),ds); clip((-0.41,-10.15)--(-0.41,8.08)--(21.25,8.08)--(21.25,-10.15)--cycle);
[/asy]
1964 IMO, 3
A circle is inscribed in a triangle $ABC$ with sides $a,b,c$. Tangents to the circle parallel to the sides of the triangle are contructe. Each of these tangents cuts off a triagnle from $\triangle ABC$. In each of these triangles, a circle is inscribed. Find the sum of the areas of all four inscribed circles (in terms of $a,b,c$).
2019 Korea USCM, 6
A function $f:[0,\infty)\to[0,\infty)$ is integrable and
$$\int_0^\infty f(x)^2 dx<\infty,\quad \int_0^\infty xf(x) dx <\infty$$
Prove the following inequality.
$$\left(\int_0^\infty f(x) dx \right)^3 \leq 8\left(\int_0^\infty f(x)^2 dx \right) \left(\int_0^\infty xf(x) dx \right)$$
2007 Kyiv Mathematical Festival, 4
The vertices of 100-gon (i.e., polygon with 100 sides) are colored alternately white or black. One of the vertices contains a checker. Two players in turn do two things: move the checker into other vertice along the side of 100-gon and then erase some side. The game ends when it is impossible to move the checker. At the end of the game if the checker is in the white vertice then the first player wins. Otherwise the second player wins. Does any of the players have winning strategy? If yes, then who?
[i]Remark.[/i] The answer may depend on initial position of the checker.
2007 Junior Balkan Team Selection Tests - Moldova, 4
The average age of the participants in a mathematics competition (gymnasts and high school students) increases by exactly one month if three high school age students $18$ years each are included in the competition or if three gymnasts aged $12$ years each are excluded from the competition. How many participants were initially in the contest?
2017 Oral Moscow Geometry Olympiad, 2
An isosceles trapezoid $ABCD$ with bases $BC$ and $AD$ is given. Circles with centers $O_1$ and $O_2$ are inscribed in triangles $ABC$ and $ABD$. Prove that line $O_1O_2$ is perpendicular on $BC$.
2012 Iran MO (3rd Round), 2
Suppose $W(k,2)$ is the smallest number such that if $n\ge W(k,2)$, for each coloring of the set $\{1,2,...,n\}$ with two colors there exists a monochromatic arithmetic progression of length $k$. Prove that
$W(k,2)=\Omega (2^{\frac{k}{2}})$.
2016 HMNT, 3
Let $V$ be a rectangular prism with integer side lengths. The largest face has area $240$ and the smallest face has area $48$. A third face has area $x$, where $x$ is not equal to $48$ or $240$. What is the sum of all possible values of $x$?
2008 Purple Comet Problems, 7
The diagram below shows an isosceles triangle with base $21$ and height $28$. Inscribed in the triangle is a square. Find the area of the shaded region inside the triangle and outside of the square.
[asy]
size(170);
defaultpen(linewidth(0.8));
draw((0,0)--(1,1));
pair A=(5,0),B=(-5,0),C=(0,14), invis[]={(1,2),(-1,2)};
pair intsquare[]={extension(origin,invis[0],A,C),extension(origin,invis[1],B,C)};
path triangle=A--B--C--cycle,square=(intsquare[0]--intsquare[1]--(intsquare[1].x,0)--(intsquare[0].x,0)--cycle);
fill(triangle,gray);
unfill(square);
draw(triangle^^square);
[/asy]
2022 JBMO TST - Turkey, 5
Each of the $n$ students writes one of the numbers $1,2$ or $3$ on each of the $29$ boards. If any two students wrote different numbers on at least one of the boards and any three students wrote the same number on at least one of the boards, what is the maximum possible value of $n$?
1984 Czech And Slovak Olympiad IIIA, 4
Let $r$ be a natural number greater than $1$. Then there exist positive irrational numbers $x, y$ such that $x^y = r$ . Prove it.
2008 Purple Comet Problems, 15
Each of the distinct letters in the following subtraction problem represents a different digit. Find the number represented by the word [b]TEAM[/b]
[size=150][b]
PURPLE
- COMET
________
[color=#FFFFFF].....[/color]TEAM [/b][/size]
2018 Online Math Open Problems, 17
Let $S$ be the set of all subsets of $\left\{2,3,\ldots,2016\right\}$ with size $1007$, and for a nonempty set $T$ of numbers, let $f(T)$ be the product of the elements in $T$. Determine the remainder when \[ \sum_{T\in S}\left(f(T)-f(T)^{-1}\right)^2\] is divided by $2017$. Note: For $b$ relatively prime to $2017$, we say that $b^{-1}$ is the unique positive integer less than $2017$ for which $2017$ divides $bb^{-1} -1$.
[i]Proposed by Tristan Shin[/i]
2012 Today's Calculation Of Integral, 818
For a function $f(x)=x^3-x^2+x$, find the limit $\lim_{n\to\infty} \int_{n}^{2n}\frac{1}{f^{-1}(x)^3+|f^{-1}(x)|}\ dx.$
2022 Assara - South Russian Girl's MO, 4
Alina knows how to twist a periodic decimal fraction in the following way: she finds the minimum preperiod of the fraction, then takes the number that makes up the period and rearranges the last one in it digit to the beginning of the number. For example, from the fraction, $0.123(56708)$ she will get $0.123(85670)$. What fraction will Alina get from fraction $\frac{503}{2022}$ ?
2011 China Northern MO, 2
As shown in figure , the inscribed circle of $ABC$ is intersects $BC$, $CA$, $AB$ at points $D$, $E$, $F$, repectively, and $P$ is a point inside the inscribed circle. The line segments $PA$, $PB$ and $PC$ intersect respectively the inscribed circle at points $X$, $Y$ and $Z$. Prove that the three lines $XD$, $YE$ and $ZF$ have a common point.
[img]https://cdn.artofproblemsolving.com/attachments/e/9/bbfb0394b9db7aa5fb1e9a869134f0bca372c1.png[/img]
2010 IFYM, Sozopol, 1
Let $A$ be the set of all sequences from 0’s or 1’s with length 4. What’s the minimal number of sequences that can be chosen, so that an arbitrary sequence from $A$ differs at most in 1 position from one of the chosen?
2013 Stanford Mathematics Tournament, 13
$\mathbb{R}^2$-tic-tac-toe is a game where two players take turns putting red and blue points anywhere on the $xy$ plane. The red player moves first. The first player to get $3$ of their points in a line without any of their opponent's points in between wins. What is the least number of moves in which Red can guarantee a win? (We count each time that Red places a point as a move, including when Red places its winning point.)
2016 ITAMO, 3
Let $\Gamma$ be the excircle of triangle $ABC$ opposite to the vertex $A$ (namely, the circle tangent to $BC$ and to the prolongations of the sides $AB$ and $AC$ from the part $B$ and $C$). Let $D$ be the center of $\Gamma$ and $E$, $F$, respectively, the points in which $\Gamma$ touches the prolongations of $AB$ and $AC$. Let $J$ be the intersection between the segments $BD$ and $EF$.
Prove that $\angle CJB$ is a right angle.
2012 China Northern MO, 6
Prove that\[(1+\frac{1}{3})(1+\frac{1}{3^2})\cdots(1+\frac{1}{3^n})< 2.\]
2008 Teodor Topan, 1
Solve in $ M_2(\mathbb{C})$ the equation $ X^2\equal{}\left(
\begin{array}{cc}
1 & 2 \\
3 & 6 \end{array}
\right)$
2006 AMC 10, 25
A bug starts at one vertex of a cube and moves along the edges of the cube according to the following rule. At each vertex the bug will choose to travel along one of the three edges emanating from that vertex. Each edge has equal probability of being chosen, and all choices are independent. What is the probability that after seven moves the bug will have visited every vertex exactly once?
$ \textbf{(A) } \frac {1}{2187} \qquad \textbf{(B) } \frac {1}{729} \qquad \textbf{(C) } \frac {2}{243} \qquad \textbf{(D) } \frac {1}{81} \qquad \textbf{(E) } \frac {5}{243}$