This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 Serbia Team Selection Test, P1

a) Given $2019$ different integers wich have no odd prime divisor less than $37$, prove there exists two of these numbers such that their sum has no odd prime divisor less than $37$. b)Does the result hold if we change $37$ to $38$ ?

2024 Thailand TST, 2

Let $a_1<a_2<a_3<\dots$ be positive integers such that $a_{k+1}$ divides $2(a_1+a_2+\dots+a_k)$ for every $k\geqslant 1$. Suppose that for infinitely many primes $p$, there exists $k$ such that $p$ divides $a_k$. Prove that for every positive integer $n$, there exists $k$ such that $n$ divides $a_k$.

2019 Tournament Of Towns, 3

The product of two positive integers $m$ and $n$ is divisible by their sum. Prove that $m + n \le n^2$. (Boris Frenkin)

2021 CCA Math Bonanza, L4.2

Tags:
Compute the number of (not necessarily convex) polygons in the coordinate plane with the following properties: [list] [*] If the coordinates of a vertex are $(x,y)$, then $x,y$ are integers and $1\leq |x|+|y|\leq 3$ [*] Every side of the polygon is parallel to either the x or y axis [*] The point $(0,0)$ is contained in the interior of the polygon. [/list] [i]2021 CCA Math Bonanza Lightning Round #4.2[/i]

1988 IMO Longlists, 88

Tags: geometry
Seven circles are given. That is, there are six circles inside a fixed circle, each tangent to the fixed circle and tangent to the two other adjacent smaller circles. If the points of contact between the six circles and the larger circle are, in order, $A_1, A_2, A_3, A_4, A_5$ and $A_6$ prove that \[ A_1 A_2 \cdot A_3 A_4 \cdot A_5 A_6 = A_2 A_3 \cdot A_4 A_5 \cdot A_6 A_1. \]

PEN P Problems, 30

Let $a_{1}, a_{2}, a_{3}, \cdots$ be an increasing sequence of nonnegative integers such that every nonnegative integer can be expressed uniquely in the form $a_{i}+2a_{j}+4a_{k}$, where $i, j, $ and $k$ are not necessarily distinct. Determine $a_{1998}$.

2015 Indonesia MO Shortlist, C1

Given natural number n. Suppose that $N$ is the maximum number of elephants that can be placed on a chessboard measuring $2 \times n$ so that no two elephants are mutually under attack. Determine the number of ways to put $N$ elephants on a chessboard sized $2 \times n$ so that no two elephants attack each other. Alternative Formulation: Determine the number of ways to put $2015$ elephants on a chessboard measuring $2 \times 2015$ so there are no two elephants attacking each othe PS. Elephant = Bishop

2010 LMT, 1

Tags:
Two distinct positive even integers sum to $8.$ Determine the larger of the $2$ integers.

1985 IMO, 6

For every real number $x_1$, construct the sequence $x_1,x_2,\ldots$ by setting: \[ x_{n+1}=x_n(x_n+{1\over n}). \] Prove that there exists exactly one value of $x_1$ which gives $0<x_n<x_{n+1}<1$ for all $n$.

LMT Team Rounds 2021+, A15 B20

Tags:
Andy and Eddie play a game in which they continuously flip a fair coin. They stop flipping when either they flip tails, heads, and tails consecutively in that order, or they flip three tails in a row. Then, if there has been an odd number of flips, Andy wins, and otherwise Eddie wins. Given that the probability that Andy wins is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers, find $m+n$. [i]Proposed by Anderw Zhao and Zachary Perry[/i]

2001 Saint Petersburg Mathematical Olympiad, 10.3

Tags: incenter , geometry
Let $I$ be the incenter of triangle $ABC$ and let $D$ be the midpoint of side $AB$. Prove that if the angle $\angle AOD$ is right, then $AB+BC=3AC$. [I]Proposed by S. Ivanov[/i]

Gheorghe Țițeica 2025, P4

Consider $n\geq 3$ points in the plane, no three of which are collinear. For every convex polygon with vertices among the $n$ points, place $k\cdot 2^k$ coins in every one of its vertices, where $k$ is the number of points strictly in the interior of the polygon. Show that in total, no matter the configuration of the $n$ points, there are at most $n(n+1)\cdot 2^{n-3}$ placed coins. [i]Cristi Săvescu[/i]

1951 Miklós Schweitzer, 3

Consider the iterated sequence (1) $ x_0,x_1 \equal{} f(x_0),\dots,x_{n \plus{} 1} \equal{} f(x_n),\dots$, where $ f(x) \equal{} 4x \minus{} x^2$. Determine the points $ x_0$ of $ [0,1]$ for which (1) converges and find the limit of (1).

1986 Tournament Of Towns, (127) 2

Does there exist a number $N$ so that there are $N - 1$ infinite arithmetic progressions with differences $2 , 3 , 4 ,..., N$ , and every natural number belongs to at least one of these progressions?

2021 Brazil Team Selection Test, 3

Let $P$ be a point on the circumcircle of acute triangle $ABC$. Let $D,E,F$ be the reflections of $P$ in the $A$-midline, $B$-midline, and $C$-midline. Let $\omega$ be the circumcircle of the triangle formed by the perpendicular bisectors of $AD, BE, CF$. Show that the circumcircles of $\triangle ADP, \triangle BEP, \triangle CFP,$ and $\omega$ share a common point.

2013 Tuymaada Olympiad, 5

Prove that every polynomial of fourth degree can be represented in the form $P(Q(x))+R(S(x))$, where $P,Q,R,S$ are quadratic trinomials. [i]A. Golovanov[/i] [b]EDIT.[/b] It is confirmed that assuming the coefficients to be [b]real[/b], while solving the problem, earned a maximum score.

2005 Spain Mathematical Olympiad, 3

In a triangle with sides $a, b, c$ the side $a$ is the arithmetic mean of $b$ and $c$. Prove that: a) $0^o \le A \le 60^o$. b) The height relative to side $a$ is three times the inradius $r$. c) The distance from the circumcenter to side $a$ is $R - r$, where $R$ is the circumradius.

1978 Chisinau City MO, 164

$50$ gangsters simultaneously shoot at each other, and each shoots at the nearest gangster (if there are several of them, then at one of them) and kills him. Find the smallest possible number of people killed.

2012 Bosnia And Herzegovina - Regional Olympiad, 2

Harry Potter can do any of the three tricks arbitrary number of times: $i)$ switch $1$ plum and $1$ pear with $2$ apples $ii)$ switch $1$ pear and $1$ apple with $3$ plums $iii)$ switch $1$ apple and $1$ plum with $4$ pears In the beginning, Harry had $2012$ of plums, apples and pears, each. Harry did some tricks and now he has $2012$ apples, $2012$ pears and more than $2012$ plums. What is the minimal number of plums he can have?

1977 Putnam, B5

Tags:
Suppose that $a_1,a_2,\dots a_n$ are real $(n>1)$ and $$A+ \sum_{i=1}^{n} a^2_i< \frac{1}{n-1} (\sum_{i=1}^{n} a_i)^2.$$ Prove that $A<2a_ia_j$ for $1\leq i<j\leq n.$

2023 Turkey MO (2nd round), 2

Let $ABC$ be a triangle and $P$ be an interior point. Let $\omega_A$ be the circle that is tangent to the circumcircle of $BPC$ at $P$ internally and tangent to the circumcircle of $ABC$ at $A_1$ internally and let $\Gamma_A$ be the circle that is tangent to the circumcircle of $BPC$ at $P$ externally and tangent to the circumcircle of $ABC$ at $A_2$ internally. Define $B_1$, $B_2$, $C_1$, $C_2$ analogously. Let $O$ be the circumcentre of $ABC$. Prove that the lines $A_1A_2$, $B_1B_2$, $C_1C_2$ and $OP$ are concurrent.

2018 Ramnicean Hope, 3

Consider two positive real numbers $ a,b $ and the function $ f:(0,\infty )\longrightarrow\left( \sqrt{ab} ,\frac{a+b}{2} \right) $ defined as $ f(x)=-x+\sqrt{x^2+(a+b)x+ab}. $ Prove that it's bijective. [i]D.M. Bătineți-Giurgiu[/i] and [i]Neculai Stanciu[/i]

2020 Mexico National Olympiad, 5

A four-element set $\{a, b, c, d\}$ of positive integers is called [i]good[/i] if there are two of them such that their product is a mutiple of the greatest common divisor of the remaining two. For example, the set $\{2, 4, 6, 8\}$ is good since the greatest common divisor of $2$ and $6$ is $2$, and it divides $4\times 8=32$. Find the greatest possible value of $n$, such that any four-element set with elements less than or equal to $n$ is good. [i]Proposed by Victor and Isaías de la Fuente[/i]

2016 LMT, 18

Tags:
Let $\triangle ABC$ be a triangle with $AB=5, BC=6, CA=7$. Suppose $P$ is a point inside $\triangle ABC$ such that $\triangle BPA\sim \triangle APC$. If $AP$ intersects $BC$ at $X$, find $\frac{BX}{CX}$. [i]Proposed by Nathan Ramesh

2014 Contests, 2

Tags:
Find the value of $\frac{2014^3-2013^3-1}{2013\times 2014}$. $ \textbf{(A) }3\qquad\textbf{(B) }5\qquad\textbf{(C) }7\qquad\textbf{(D) }9\qquad\textbf{(E) }11 $