This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2021 Romania EGMO TST, P3

Let $X$ be a finite set with $n\geqslant 3$ elements and let $A_1,A_2,\ldots, A_p$ be $3$-element subsets of $X$ satisfying $|A_i\cap A_j|\leqslant 1$ for all indices $i,j$. Show that there exists a subset $A{}$ of $X$ so that none of $A_1,A_2,\ldots, A_p$ is included in $A{}$ and $|A|\geqslant\lfloor\sqrt{2n}\rfloor$.

2014 239 Open Mathematical Olympiad, 7

Tags: geometry
A circle $\omega$ is strictly inside triangle $ABC$. The tangents from $A$ to $\omega$ intersect $BC$ in $A_1,A_2$ define $B_1,B_2,C_1,C_2$ similarly. Prove that if five of six points $A_1,A_2,B_1,B_2,C_1,C_2$ lie on a circle the sixth one lie on the circle too.

1977 Chisinau City MO, 138

In an isosceles triangle $BAC$ ($| AC | = | AB |$) , point $D$ is marked on the side $AC$. Determine the angles of the triangle $BDC$ if $\angle A = 40^o$ and $|BC|: |AD|= \sqrt3$.

2024 Romania National Olympiad, 4

Let $a$ be a given positive integer. We consider the sequence $(x_n)_{n \ge 1}$ defined by $x_n=\frac{1}{1+na},$ for every positive integer $n.$ Prove that for any integer $k \ge 3,$ there exist positive integers $n_1<n_2<\ldots<n_k$ such that the numbers $x_{n_1},x_{n_2},\ldots,x_{n_k}$ are consecutive terms in an arithmetic progression.

LMT Team Rounds 2021+, 7

Kevin has a square piece of paper with creases drawn to split the paper in half in both directions, and then each of the four small formed squares diagonal creases drawn, as shown below. [img]https://cdn.artofproblemsolving.com/attachments/2/2/70d6c54e86856af3a977265a8054fd9b0444b0.png[/img] Find the sum of the corresponding numerical values of figures below that Kevin can create by folding the above piece of paper along the creases. (The figures are to scale.) Kevin cannot cut the paper or rip it in any way. [img]https://cdn.artofproblemsolving.com/attachments/a/c/e0e62a743c00d35b9e6e2f702106016b9e7872.png[/img]

2021 Azerbaijan IMO TST, 3

Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: [list] [*] $(i)$ $f(n) \neq 0$ for at least one $n$; [*] $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$; [*] $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$. [/list]

1979 IMO Longlists, 73

In a plane a finite number of equal circles are given. These circles are mutually nonintersecting (they may be externally tangent). Prove that one can use at most four colors for coloring these circles so that two circles tangent to each other are of different colors. What is the smallest number of circles that requires four colors?

2017 ASDAN Math Tournament, 12

Tags:
Anna has a magical compass which can point only in four directions: North, East, South, West. Initially, the compass points North. After each minute, the compass can either turn left, turn right, or stay at its current orientation, with each action occurring with equal probability. What is the probability that the compass points South after $6$ minutes?

2011 Sharygin Geometry Olympiad, 6

Prove that for any nonisosceles triangle $l_1^2>\sqrt3 S>l_2^2$, where $l_1, l_2$ are the greatest and the smallest bisectors of the triangle and $S$ is its area.

2012 Today's Calculation Of Integral, 847

Consider a right-angled triangle with $AB=1,\ AC=\sqrt{3},\ \angle{BAC}=\frac{\pi}{2}.$ Let $P_1,\ P_2,\ \cdots\cdots,\ P_{n-1}\ (n\geq 2)$ be the points which are closest from $A$, in this order and obtained by dividing $n$ equally parts of the line segment $AB$. Denote by $A=P_0,\ B=P_n$, answer the questions as below. (1) Find the inradius of $\triangle{P_kCP_{k+1}}\ (0\leq k\leq n-1)$. (2) Denote by $S_n$ the total sum of the area of the incircle for $\triangle{P_kCP_{k+1}}\ (0\leq k\leq n-1)$. Let $I_n=\frac{1}{n}\sum_{k=0}^{n-1} \frac{1}{3+\left(\frac{k}{n}\right)^2}$, show that $nS_n\leq \frac {3\pi}4I_n$, then find the limit $\lim_{n\to\infty} I_n$. (3) Find the limit $\lim_{n\to\infty} nS_n$.

2012 Mid-Michigan MO, 10-12

[b]p1.[/b] A triangle $ABC$ is drawn in the plane. A point $D$ is chosen inside the triangle. Show that the sum of distances $AD+BD+CD$ is less than the perimeter of the triangle. [b]p2.[/b] In a triangle $ABC$ the bisector of the angle $C$ intersects the side $AB$ at $M$, and the bisector of the angle $A$ intersects $CM$ at the point $T$. Suppose that the segments $CM$ and $AT$ divided the triangle $ABC$ into three isosceles triangles. Find the angles of the triangle $ABC$. [b]p3.[/b] You are given $100$ weights of masses $1, 2, 3,..., 99, 100$. Can one distribute them into $10$ piles having the following property: the heavier the pile, the fewer weights it contains? [b]p4.[/b] Each cell of a $10\times 10$ table contains a number. In each line the greatest number (or one of the largest, if more than one) is underscored, and in each column the smallest (or one of the smallest) is also underscored. It turned out that all of the underscored numbers are underscored exactly twice. Prove that all numbers stored in the table are equal to each other. [b]p5.[/b] Two stores have warehouses in which wheat is stored. There are $16$ more tons of wheat in the first warehouse than in the second. Every night exactly at midnight the owner of each store steals from his rival, taking a quarter of the wheat in his rival's warehouse and dragging it to his own. After $10$ days, the thieves are caught. Which warehouse has more wheat at this point and by how much? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1992 National High School Mathematics League, 10

$z_1,z_2$ are complex numbers. $|z_1|=3,|z_2|=5,|z_1+z_2|=7$, then $\arg(\frac{z_2}{z_1})^3=$________.

1993 AMC 12/AHSME, 24

A box contains $3$ shiny pennies and $4$ dull pennies. One by one, pennies are drawn at random from the box and not replaced. If the probability is $\frac{a}{b}$ that it will take more than four draws until the third shiny penny appears and $\frac{a}{b}$ is in lowest terms, then $a+b=$ $ \textbf{(A)}\ 11 \qquad\textbf{(B)}\ 20 \qquad\textbf{(C)}\ 35 \qquad\textbf{(D)}\ 58 \qquad\textbf{(E)}\ 66 $

2012 USAMO, 5

Let $P$ be a point in the plane of $\triangle ABC$, and $\gamma$ a line passing through $P$. Let $A', B', C'$ be the points where the reflections of lines $PA, PB, PC$ with respect to $\gamma$ intersect lines $BC, AC, AB$ respectively. Prove that $A', B', C'$ are collinear.

2022 Putnam, B3

Tags:
Assign to each positive real number a color, either red or blue. Let $D$ be the set of all distances $d>0$ such that there are two points of the same color at distance $d$ apart. Recolor the positive reals so that the numbers in $D$ are red and the numbers not in $D$ are blue. If we iterate the recoloring process, will we always end up with all the numbers red after a finite number of steps?

2014 Postal Coaching, 5

Let $p>3$ be a prime and let $1+\frac 12 +\frac 13 +\cdots+\frac 1p=\frac ab$.Prove that $p^4$ divides $ap-b$.

1999 Ukraine Team Selection Test, 1

A triangle $ABC$ is given. Points $E,F,G$ are arbitrarily selected on the sides $AB,BC,CA$, respectively, such that $AF\perp EG$ and the quadrilateral $AEFG$ is cyclic. Find the locus of the intersection point of $AF$ and $EG$.

2022 Belarusian National Olympiad, 10.8

A sequence $a_1,\ldots,a_n$ of positive integers is given. For each $l$ from $1$ to $n-1$ the array $(gcd(a_1,a_{1+l}),\ldots,gcd(a_n,a_{n+l}))$ is considered, where indices are taken modulo $n$. It turned out that all this arrays consist of the same $n$ pairwise distinct numbers and differ only,possibly, by their order. Can $n$ be a) $21$ b) $2021$

2005 Tournament of Towns, 6

Karlsson-on-the-Roof has $1000$ jars of jam. The jars are not necessarily identical; each contains no more than $\dfrac{1}{100}$-th of the total amount of the jam. Every morning, Karlsson chooses any $100$ jars and eats the same amount of the jam from each of them. Prove that Karlsson can eat all the jam. [i](8 points)[/i]

2024 Canadian Open Math Challenge, A2

Tags:
Alice and Bob are running around a rectangular building measuring 100 by 200 meters. They start at the middle of a 200 meter side and run in the same direction, Alice running twice as fast as Bob. After Bob runs one lap around the building, what fraction of the time were Alice and Bob on the same side of the building?

2017 Online Math Open Problems, 28

Tags:
Let $S$ denote the set of fractions $\dfrac mn$ for relatively prime positive integers $m$ and $n$ with $m+n\le 10000$. The least fraction in $S$ that is strictly greater than \[\prod_{i=0}^\infty \left(1-\dfrac{1}{10^{2i+1}}\right)\] can be expressed in the form $\dfrac pq$, where $p$ and $q$ are relatively prime positive integers. Find $1000p+q$. [i]Proposed by James Lin[/i]

2022 HMNT, 19

Tags:
Define the [i]annoyingness[/i] of a permutation of the first $n$ integers to be the minimum number of copies of the permutation that are needed to be placed next to each other so that the subsequence $1,2 \ldots ,n$ appears. For instance, the annoyingness of $3,2,1$ is $3,$ and the annoyingness of $1,3,4,2$ is $2.$ A random permutation of $1,2, \ldots, 2022$ is selected. Compute the expected value of the annoyingness of this permutation.

2017 Dutch IMO TST, 1

Let $n$ be a positive integer. Suppose that we have disks of radii $1, 2, . . . , n.$ Of each size there are two disks: a transparent one and an opaque one. In every disk there is a small hole in the centre, with which we can stack the disks using a vertical stick. We want to make stacks of disks that satisfy the following conditions: $i)$ Of each size exactly one disk lies in the stack. $ii)$ If we look at the stack from directly above, we can see the edges of all of the $n$ disks in the stack. (So if there is an opaque disk in the stack,no smaller disks may lie beneath it.) Determine the number of distinct stacks of disks satisfying these conditions. (Two stacks are distinct if they do not use the same set of disks, or, if they do use the same set of disks and the orders in which the disks occur are different.)

2021 LMT Spring, A26 B27

Tags: algebra
Chandler the Octopus along with his friends Maisy the Bear and Jeff the Frog are solving LMT problems. It takes Maisy $3$ minutes to solve a problem, Chandler $4$ minutes to solve a problem and Jeff $5$ minutes to solve a problem. They start at $12:00$ pm, and Chandler has a dentist appointment from $12:10$ pm to $12:30$, after which he comes back and continues solving LMT problems. The time it will take for them to finish solving $50$ LMT problems, in hours, is $m/n$ ,where $m$ and $n$ are relatively prime positive integers. Find $m +n$. [b]Note:[/b] they may collaborate on problems. [i]Proposed by Aditya Rao[/i]

2003 CentroAmerican, 1

Two players $A$ and $B$ take turns playing the following game: There is a pile of $2003$ stones. In his first turn, $A$ selects a divisor of $2003$ and removes this number of stones from the pile. $B$ then chooses a divisor of the number of remaining stones, and removes that number of stones from the new pile, and so on. The player who has to remove the last stone loses. Show that one of the two players has a winning strategy and describe the strategy.