Found problems: 85335
Fractal Edition 2, P4
In the bottom-left corner of a chessboard (with 8 rows and 8 columns), there is a king. Marius and Alexandru play a game, with Alexandru going first. On their turn, each player moves the king either one square to the right, one square up, or one square diagonally up-right. The player who moves the king to the top-right corner square wins. Who will win if both players play optimally?
Champions Tournament Seniors - geometry, 2008.2
Given a right triangle $ABC$ with $ \angle C=90^o$. On its hypotenuse $AB$ is arbitrary mark the point$ P$. The point $Q$ is symmetric to the point $P$ wrt $AC$. Let the lines $PQ$ and $BQ$ intersect $AC$ at points $O$ and $R$ respectively. Denote by $S$ the foot of the perpendicular from the point $R$ on the line $AB$ ($S \ne P$), and let $T$ be the intersection point of lines $OS$ and $BR$. Prove that $R$ is the center of the circle inscribed in the triangle $CST$.
2009 District Olympiad, 1
Let $ f,g:\mathbb{R}\longrightarrow\mathbb{R} $ be functions with the property that
$$ f\left( g(x) \right) =g\left( f(x) \right) =-x,\quad\forall x\in\mathbb{R} $$
[b]a)[/b] Show that $ f,g $ are odd.
[b]b)[/b] Give a concrete example of such $ f,g. $
2007 Estonia National Olympiad, 1
The seven-digit integer numbers are different in pairs and this number is divided by each of its own numbers.
a) Find all possibilities for the three numbers that are not included in this number.
b) Give an example of such a number.
1983 Dutch Mathematical Olympiad, 1
A triangle $ ABC$ can be divided into two isosceles triangles by a line through $ A$. Given that one of the angles of the triangles is $ 30^{\circ}$, find all possible values of the other two angles.
2008 Sharygin Geometry Olympiad, 24
(I.Bogdanov, 11) Let $ h$ be the least altitude of a tetrahedron, and $ d$ the least distance between its opposite edges. For what values of $ t$ the inequality $ d>th$ is possible?
2013 Dutch BxMO/EGMO TST, 1
In quadrilateral $ABCD$ the sides $AB$ and $CD$ are parallel. Let $M$ be the midpoint of diagonal $AC$. Suppose that triangles $ABM$ and $ACD$ have equal area. Prove that $DM // BC$.
1985 Tournament Of Towns, (103) 7
(a)The game of "super- chess" is played on a $30 \times 30$ board and involves $20$ different pieces. Each piece moves according to its own rules , but cannot move from any square to more than $20$ other squares . A piece "captures" another piece which is on a square to which it has moved. A permitted move (e.g. $m$ squares forward and $n$ squares to the right) does not depend on the piece 's starting square . Prove that
(i) A piece cannot cap ture a piece on a given square from more than $20$ starting squares.
(ii) It is possible to arrange all $20$ pieces on the board in such a way that not one of them can capture any of the others in one move.
(b) The game of "super-chess" is played on a $100 \times 100$ board and involves $20$ different pieces. Each piece moves according to its own rules , but cannot move from any square to more than $20$ other squares. A piece "captures" another piece which is on a square to which it has moved. It is possible that a permitted move (e.g. $m$ squares forward and $n$ squares to the right) may vary, depending on the piece's position .
Prove that one can arrange all $20$ pieces on the board in such a way that not one of them can capture any of the others in one move.
( A . K . Tolpygo, Kiev)
PS. (a) for Juniors , (b) for Seniors
1988 Polish MO Finals, 3
$W$ is a polygon which has a center of symmetry $S$ such that if $P$ belongs to $W$, then so does $P'$, where $S$ is the midpoint of $PP'$. Show that there is a parallelogram $V$ containing $W$ such that the midpoint of each side of $V$ lies on the border of $W$.
2021 Iran RMM TST, 2
Let $f : \mathbb{R}^+\to\mathbb{R}$ satisfying $f(x)=f(x+2)+2f(x^2+2x)$. Prove that if for all $x>1400^{2021}$, $xf(x) \le 2021$, then $xf(x) \le 2021$ for all $x \in \mathbb {R}^+$
Proposed by [i]Navid Safaei[/i]
2019 AMC 12/AHSME, 4
A positive integer $n$ satisfies the equation $(n+1)! + (n+2)! = n! \cdot 440$. What is the sum of the digits of $n$?
$\textbf{(A) }2\qquad\textbf{(B) }5\qquad\textbf{(C) }10\qquad\textbf{(D) }12\qquad\textbf{(E) }15$
1992 IMO Longlists, 52
Let $n$ be an integer $> 1$. In a circular arrangement of $n$ lamps $L_0, \cdots, L_{n-1}$, each one of which can be either ON or OFF, we start with the situation that all lamps are ON, and then carry out a sequence of steps, $Step_0, Step_1, \cdots$. If $L_{j-1}$ ($j$ is taken mod n) is ON, then $Step_j$ changes the status of $L_j$ (it goes from ON to OFF or from OFF to ON) but does not change the status of any of the other lamps. If $L_{j-1}$ is OFF, then $Step_j$ does not change anything at all. Show that:
[i](a)[/i] There is a positive integer $M(n)$ such that after $M(n)$ steps all lamps are ON again.
[i](b)[/i] If $n$ has the form $2^k$, then all lamps are ON after $n^2 - 1$ steps.
[i](c) [/i]If $n$ has the form $2^k +1$, then all lamps are ON after $n^2 -n+1$ steps.
1993 IMO Shortlist, 5
On an infinite chessboard, a solitaire game is played as follows: at the start, we have $n^2$ pieces occupying a square of side $n.$ The only allowed move is to jump over an occupied square to an unoccupied one, and the piece which has been jumped over is removed. For which $n$ can the game end with only one piece remaining on the board?
2017 Israel National Olympiad, 6
Let $f:\mathbb{Q}\times\mathbb{Q}\to\mathbb{Q}$ be a function satisfying:
[list]
[*] For any $x_1,x_2,y_1,y_2 \in \mathbb Q$, $$f\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right) \leq \frac{f(x_1,y_1)+f(x_2,y_2)}{2}.$$
[*] $f(0,0) \leq 0$.
[*] For any $x,y \in \mathbb Q$ satisfying $x^2+y^2>100$, the inequality $f(x,y)>1$ holds.\
Prove that there is some positive rational number $b$ such that for all rationals $x,y$, $$f(x,y) \ge b\sqrt{x^2+y^2} - \frac{1}{b}.$$
1978 Austrian-Polish Competition, 6
We are given a family of discs in the plane, with pairwise disjoint interiors. Each disc is tangent to at least six other discs of the family. Show that the family is infinite.
1972 IMO Longlists, 22
Show that for any $n \not \equiv 0 \pmod{10}$ there exists a multiple of $n$ not containing the digit $0$ in its decimal expansion.
1991 Arnold's Trivium, 43
Find the Betti numbers of the surface $x_1^2+\cdots+x_k^2-y_1^2-\cdots-y_l^2=1$ and the set $x_1^2+\cdots+x_k^2\le1+y_1^2+\cdots+y_l^2$ in a $(k+l)$-dimensional linear space.
2022 Israel Olympic Revenge, 2
A triple $(a,b,c)$ of positive integers is called [b]strong[/b] if the following holds: for each integer $m>1$, the number $a+b+c$ does not divide $a^m+b^m+c^m$. The [b]sum[/b] of a strong triple $(a,b,c)$ is defined as $a+b+c$.
Prove that there exists an infinite collection of strong triples, the sums of which are all pairwise coprime.
1981 IMO Shortlist, 18
Several equal spherical planets are given in outer space. On the surface of each planet there is a set of points that is invisible from any of the remaining planets. Prove that the sum of the areas of all these sets is equal to the area of the surface of one planet.
2007 Federal Competition For Advanced Students, Part 2, 2
38th Austrian Mathematical Olympiad 2007, round 3 problem 5
Given is a convex $ n$-gon with a triangulation, that is a partition into triangles through diagonals that don’t cut each other. Show that it’s always possible to mark the $ n$ corners with the digits of the number $ 2007$ such that every quadrilateral consisting of $ 2$ neighbored (along an edge) triangles has got $ 9$ as the sum of the numbers on its $ 4$ corners.
2015 AMC 12/AHSME, 19
In $\triangle{ABC}$, $\angle{C} = 90^{\circ}$ and $AB = 12$. Squares $ABXY$ and $ACWZ$ are constructed outside of the triangle. The points $X, Y, Z$, and $W$ lie on a circle. What is the perimeter of the triangle?
$ \textbf{(A)}\ 12+9\sqrt{3}\qquad\textbf{(B)}\ 18+6\sqrt{3}\qquad\textbf{(C)}\ 12+12\sqrt{2}\qquad\textbf{(D)}\ 30\qquad\textbf{(E)}\ 32 $
2019 Ukraine Team Selection Test, 3
Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.
2024 AMC 8 -, 3
Four squares of side length $4, 7, 9,$ and $10$ are arranged in increasing size order so that their left edges and bottom edges align. The squares alternate in color white-gray-white-gray, respectively, as shown in the figure. What is the area of the visible gray region in square units?
[asy]
size(150);
filldraw((0,0)--(10,0)--(10,10)--(0,10)--cycle,gray(0.7),linewidth(1));
filldraw((0,0)--(9,0)--(9,9)--(0,9)--cycle,white,linewidth(1));
filldraw((0,0)--(7,0)--(7,7)--(0,7)--cycle,gray(0.7),linewidth(1));
filldraw((0,0)--(4,0)--(4,4)--(0,4)--cycle,white,linewidth(1));
draw((11,0)--(11,4),linewidth(1));
draw((11,6)--(11,10),linewidth(1));
label("$10$",(11,5),fontsize(14pt));
draw((10.75,0)--(11.25,0),linewidth(1));
draw((10.75,10)--(11.25,10),linewidth(1));
draw((0,11)--(3,11),linewidth(1));
draw((5,11)--(9,11),linewidth(1));
draw((0,11.25)--(0,10.75),linewidth(1));
draw((9,11.25)--(9,10.75),linewidth(1));
label("$9$",(4,11),fontsize(14pt));
draw((-1,0)--(-1,1),linewidth(1));
draw((-1,3)--(-1,7),linewidth(1));
draw((-1.25,0)--(-0.75,0),linewidth(1));
draw((-1.25,7)--(-0.75,7),linewidth(1));
label("$7$",(-1,2),fontsize(14pt));
draw((0,-1)--(1,-1),linewidth(1));
draw((3,-1)--(4,-1),linewidth(1));
draw((0,-1.25)--(0,-.75),linewidth(1));
draw((4,-1.25)--(4,-.75),linewidth(1));
label("$4$",(2,-1),fontsize(14pt));
[/asy]
$\textbf{(A)}\ 42 \qquad \textbf{(B)}\ 45\qquad \textbf{(C)}\ 49\qquad \textbf{(D)}\ 50\qquad \textbf{(E)}\ 52$
2004 Iran MO (3rd Round), 4
We have finite white and finite black points that for each 4 oints there is a line that white points and black points are at different sides of this line.Prove there is a line that all white points and black points are at different side of this line.
2013 Germany Team Selection Test, 2
Given a $m\times n$ grid rectangle with $m,n \ge 4$ and a closed path $P$ that is not self intersecting from inner points of the grid, let $A$ be the number of points on $P$ such that $P$ does not turn in them and let $B$ be the number of squares that $P$ goes through two non-adjacent sides of them furthermore let $C$ be the number of squares with no side in $P$. Prove that $$A=B-C+m+n-1.$$