This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2006 Moldova National Olympiad, 10.2

Let $n$ be a positive integer, $n\geq 2$. Let $M=\{0,1,2,\ldots n-1\}$. For an integer nonzero number $a$ we define the function $f_{a}: M\longrightarrow M$, such that $f_{a}(x)$ is the remainder when dividing $ax$ at $n$. Find a necessary and sufficient condition such that $f_{a}$ is bijective. And if $f_{a}$ is bijective and $n$ is a prime number, prove that $a^{n(n-1)}-1$ is divisible by $n^{2}$.

2001 Greece National Olympiad, 3

Tags: algebra , function
A function $f : \Bbb{N}_0 \to \Bbb{R}$ satisfies $f(1) = 3$ and \[f(m + n) + f(m - n) - m + n - 1 =\frac{f(2m) + f(2n)}{2},\] for any non-negative integers $m$ and $n$ with $m \geq n.$ Find all such functions $f$.

1992 IMO Longlists, 76

Given any triangle $ABC$ and any positive integer $n$, we say that $n$ is a [i]decomposable[/i] number for triangle $ABC$ if there exists a decomposition of the triangle $ABC$ into $n$ subtriangles with each subtriangle similar to $\triangle ABC$. Determine the positive integers that are decomposable numbers for every triangle.

2016 Latvia National Olympiad, 4

In a Pythagorean triangle all sides are longer than 5. Is it possible that (a) all three sides are prime numbers, (b) exactly two sides are prime numbers. (Note: We call a triangle "Pythagorean", if it is a right-angled triangle where all sides are positive integers.)

2020 Princeton University Math Competition, A8

Let $f(k)$ denote the number of triples $(a, b, c)$ of positive integers satisfying $a + b + c = 2020$ with $(k - 1)$ not dividing $a, k$ not dividing $b$, and $(k + 1)$ not dividing $c$. Find the product of all integers $k$ in the range 3 \le k \le 20 such that $(k + 1)$ divides $f(k)$.

1991 Greece National Olympiad, 3

Prove that exists triangle that can be partitions in $2050$ congruent triangles.

2025 Macedonian Balkan MO TST, 4

Let $n$ be a positive integer. Prove that for every odd prime $p$ dividing $n^2 + n + 2$, there exist integers $a, b$ such that $p = a^2 + 7b^2$.

2011 Saudi Arabia BMO TST, 4

Let $p \ge 3$ be a prime. For $j = 1,2 ,... ,p - 1$, let $r_j$ be the remainder when the integer $\frac{j^{p-1}-1}{p}$ is divided by $p$. Prove that $$r_1 + 2r_2 + ... + (p - 1)r_{p-1} \equiv \frac{p+1}{2} (\mod p)$$

2012 All-Russian Olympiad, 2

Tags: geometry , incenter
The points $A_1,B_1,C_1$ lie on the sides sides $BC,AC$ and $AB$ of the triangle $ABC$ respectively. Suppose that $AB_1-AC_1=CA_1-CB_1=BC_1-BA_1$. Let $I_A, I_B, I_C$ be the incentres of triangles $AB_1C_1,A_1BC_1$ and $A_1B_1C$ respectively. Prove that the circumcentre of triangle $I_AI_BI_C$ is the incentre of triangle $ABC$.

2004 AMC 12/AHSME, 14

A sequence of three real numbers forms an arithmetic progression with a first term of $ 9$. If $ 2$ is added to the second term and $ 20$ is added to the third term, the three resulting numbers form a geometric progression. What is the smallest possible value for the third term in the geometric progression? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 36 \qquad \textbf{(D)}\ 49 \qquad \textbf{(E)}\ 81$

Russian TST 2016, P2

Let $x,y,z{}$ be positive real numbers. Prove that \[(xy+yz+zx)\left(\frac{1}{x^2+y^2}+\frac{1}{y^2+z^2}+\frac{1}{z^2+x^2}\right)>\frac{5}{2}.\]

2013 Brazil National Olympiad, 3

Find all injective functions $f\colon \mathbb{R}^* \to \mathbb{R}^* $ from the non-zero reals to the non-zero reals, such that \[f(x+y) \left(f(x) + f(y)\right) = f(xy)\] for all non-zero reals $x, y$ such that $x+y \neq 0$.

2011 Today's Calculation Of Integral, 767

For $0\leq t\leq 1$, define $f(t)=\int_0^{2\pi} |\sin x-t|dx.$ Evaluate $\int_0^1 f(t)dt.$

2019 Hong Kong TST, 2

A circle is circumscribed around an isosceles triangle whose two base angles are equal to $x^{\circ}$. Two points are chosen independently and randomly on the circle, and a chord is drawn between them. The probability that the chord intersects the triangle is $\frac{14}{25}.$ Find the sum of the largest and smallest possible value of $x$.

2025 Azerbaijan Senior NMO, 3

You are given a positive integer $n$. $n^2$ amount of people stand on coordinates $(x;y)$ where $x,y\in\{0;1;2;...;n-1\}$. Every person got a water cup and two people are considered to be neighbour if the distance between them is $1$. At the first minute, the person standing on coordinates $(0;0)$ got $1$ litres of water, and the other $n^2-1$ people's water cup is empty. Every minute, two neighbouring people are chosen that does not have the same amount of water in their water cups, and they equalize the amount of water in their water cups. Prove that, no matter what, the person standing on the coordinates $(x;y)$ will not have more than $\frac1{x+y+1}$ litres of water.

2017 China Team Selection Test, 1

Prove that :$$\sum_{k=0}^{58}C_{2017+k}^{58-k}C_{2075-k}^{k}=\sum_{p=0}^{29}C_{4091-2p}^{58-2p}$$

2014 Taiwan TST Round 2, 1

Let $ABC$ be a triangle with incenter $I$ and circumcenter $O$. A straight line $L$ is parallel to $BC$ and tangent to the incircle. Suppose $L$ intersects $IO$ at $X$, and select $Y$ on $L$ such that $YI$ is perpendicular to $IO$. Prove that $A$, $X$, $O$, $Y$ are cyclic. [i]Proposed by Telv Cohl[/i]

2015 IFYM, Sozopol, 2

Let $a_0,a_1,a_2...$ be a sequence of natural numbers with the following property: $a_n^2$ divides $a_{n-1} a_{n+1}$ for $\forall$ $n\in \mathbb{N}$. Prove that, if for some natural $k\geq 2$ the numbers $a_1$ and $a_k$ are coprime, then $a_1$ divides $a_0$.

2009 IMO Shortlist, 8

Let $ABCD$ be a circumscribed quadrilateral. Let $g$ be a line through $A$ which meets the segment $BC$ in $M$ and the line $CD$ in $N$. Denote by $I_1$, $I_2$ and $I_3$ the incenters of $\triangle ABM$, $\triangle MNC$ and $\triangle NDA$, respectively. Prove that the orthocenter of $\triangle I_1I_2I_3$ lies on $g$. [i]Proposed by Nikolay Beluhov, Bulgaria[/i]

LMT Speed Rounds, 2016.8

Tags:
How many lattice points $P$ in or on the circle $x^2+y^2=25$ have the property that there exists a unique line with rational slope through $P$ that divides the circle into two parts with equal areas? [i]Proposed by Nathan Ramesh

2018 Saudi Arabia JBMO TST, 4

Let $n=>2$ be a natural number. A set $S$ of natural numbers is called $complete$ if, for any integer $0<=x<n$, there is a subset of $S$ with the property that the remainder of the division by $n$ of the sum of the elements in the subset is $x$. The sum of the elements of the empty set is considered to be $0$. Show that if a set $S$ is $complete$, then there is a subset of $S$ which has at most $n-1$ elements and which is still $complete$.

2014 Mexico National Olympiad, 1

Each of the integers from 1 to 4027 has been colored either green or red. Changing the color of a number is making it red if it was green and making it green if it was red. Two positive integers $m$ and $n$ are said to be [i]cuates[/i] if either $\frac{m}{n}$ or $\frac{n}{m}$ is a prime number. A [i]step[/i] consists in choosing two numbers that are cuates and changing the color of each of them. Show it is possible to apply a sequence of steps such that every integer from 1 to 2014 is green.

2014 Korea Junior Math Olympiad, 6

Let $p = 1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}. $ For nonnegative reals $x, y,z$ satisfying $(x-1)^2 + (y-1)^2 + (z-1)^2 = 27,$ find the maximum value of $x^p + y^p + z^p.$

Russian TST 2022, P2

The kingdom of Anisotropy consists of $n$ cities. For every two cities there exists exactly one direct one-way road between them. We say that a [i]path from $X$ to $Y$[/i] is a sequence of roads such that one can move from $X$ to $Y$ along this sequence without returning to an already visited city. A collection of paths is called [i]diverse[/i] if no road belongs to two or more paths in the collection. Let $A$ and $B$ be two distinct cities in Anisotropy. Let $N_{AB}$ denote the maximal number of paths in a diverse collection of paths from $A$ to $B$. Similarly, let $N_{BA}$ denote the maximal number of paths in a diverse collection of paths from $B$ to $A$. Prove that the equality $N_{AB} = N_{BA}$ holds if and only if the number of roads going out from $A$ is the same as the number of roads going out from $B$. [i]Proposed by Warut Suksompong, Thailand[/i]

1996 Romania National Olympiad, 4

Let $f:[0,1) \to \mathbb{R}$ be a monotonic function. Prove that the limits [center]$\lim_{x \nearrow 1} \int_0^x f(t) \mathrm{d}t$ and $\lim_{n \to \infty} \frac{1}{n} \left[ f(0) + f \left(\frac{1}{n}\right) + \ldots + f \left( \frac{n-1}{n} \right) \right]$[/center] exist and are equal.