Found problems: 85335
1990 Turkey Team Selection Test, 4
Let $ABCD$ be a convex quadrilateral such that \[\begin{array}{rl} E,F \in [AB],& AE = EF = FB \\ G,H \in [BC],& BG = GH = HC \\ K,L \in [CD],& CK = KL = LD \\ M,N \in [DA],& DM = MN = NA \end{array}\] Let \[[NG] \cap [LE] = \{P\}, [NG]\cap [KF] = \{Q\},\] \[{[}MH] \cap [KF] = \{R\}, [MH]\cap [LE]=\{S\}\]
Prove that [list=a][*]$Area(ABCD) = 9 \cdot Area(PQRS)$ [*] $NP=PQ=QG$ [/list]
1959 AMC 12/AHSME, 15
In a right triangle the square of the hypotenuse is equal to twice the product of the legs. One of the acute angles of the triangle is:
$ \textbf{(A)}\ 15^{\circ} \qquad\textbf{(B)}\ 30^{\circ} \qquad\textbf{(C)}\ 45^{\circ} \qquad\textbf{(D)}\ 60^{\circ} \qquad\textbf{(E)}\ 75^{\circ} $
2004 IMC, 1
Let $A$ be a real $4\times 2$ matrix and $B$ be a real $2\times 4$ matrix such that
\[ AB = \left(%
\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
\end{array}%
\right). \]
Find $BA$.
1997 Federal Competition For Advanced Students, P2, 4
Determine all quadruples $ (a,b,c,d)$ of real numbers satisfying the equation:
$ 256a^3 b^3 c^3 d^3\equal{}(a^6\plus{}b^2\plus{}c^2\plus{}d^2)(a^2\plus{}b^6\plus{}c^2\plus{}d^2)(a^2\plus{}b^2\plus{}c^6\plus{}d^2)(a^2\plus{}b^2\plus{}c^2\plus{}d^6).$
2019 India IMO Training Camp, P2
Show that there do not exist natural numbers $a_1, a_2, \dots, a_{2018}$ such that the numbers \[ (a_1)^{2018}+a_2, (a_2)^{2018}+a_3, \dots, (a_{2018})^{2018}+a_1 \] are all powers of $5$
[i]Proposed by Tejaswi Navilarekallu[/i]
2018 Romania Team Selection Tests, 1
Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.
2020 USMCA, 7
Let $ABCD$ be a convex quadrilateral, and let $\omega_A$ and $\omega_B$ be the incircles of $\triangle ACD$ and $\triangle BCD$, with centers $I$ and $J$. The second common external tangent to $\omega_A$ and $\omega_B$ touches $\omega_A$ at $K$ and $\omega_B$ at $L$. Prove that lines $AK$, $BL$, $IJ$ are concurrent.
VI Soros Olympiad 1999 - 2000 (Russia), 9.8
Let $a_n$ denote an angle from the interval for each $\left( 0, \frac{\pi}{2}\right)$ , the tangent of which is equal to $n$ . Prove that
$$\sqrt{1+1^2} \sin(a_1-a_{1000}) + \sqrt{1+2^2} \sin(a_2-a_{1000})+...+\sqrt{1+2000^2} \sin(a_{2000}-a_{1000}) = \sin a_{1000} $$
2014 AMC 8, 6
Six rectangles each with a common base width of $2$ have lengths of $1, 4, 9, 16, 25,$ and $36$. What is the sum of the areas of the six rectangles?
$\textbf{(A) }91\qquad\textbf{(B) }93\qquad\textbf{(C) }162\qquad\textbf{(D) }182\qquad \textbf{(E) }202$
2025 Abelkonkurransen Finale, 3a
Let \(ABC\) be a triangle. Let \(E,F\) be the feet of the altitudes from \(B,C\) respectively. Let \(P,Q\) be the projections of \(B,C\) onto line \(EF\). Show that \(PE=QF\).
1963 Miklós Schweitzer, 5
Let $ H$ be a set of real numbers that does not consist of $ 0$ alone and is closed under addition. Further, let $ f(x)$ be a
real-valued function defined on $ H$ and satisfying the following conditions: \[ \;f(x)\leq f(y)\ \mathrm{if} \;x \leq y\] and \[ f(x\plus{}y)\equal{}f(x)\plus{}f(y) \;(x,y \in H)\ .\] Prove that $ f(x)\equal{}cx$ on $ H$, where $ c$ is a nonnegative number. [M. Hosszu, R. Borges]
2012 Indonesia TST, 1
Suppose $P(x,y)$ is a homogenous non-constant polynomial with real coefficients such that $P(\sin t, \cos t) = 1$ for all real $t$. Prove that $P(x,y) = (x^2+y^2)^k$ for some positive integer $k$.
(A polynomial $A(x,y)$ with real coefficients and having a degree of $n$ is homogenous if it is the sum of $a_ix^iy^{n-i}$ for some real number $a_i$, for all integer $0 \le i \le n$.)
2012 China Northern MO, 3
Suppose $S= \{x|x=a^2+ab+b^2,a,b \in Z\}$. Prove that:
(1) If $m \in S$, $3|m$ , then $\frac{m}{3} \in S$
(2) If $m,n \in S$ , then $mn\in S$.
1967 IMO Longlists, 55
Find all $x$ for which, for all $n,$ \[\sum^n_{k=1} \sin {k x} \leq \frac{\sqrt{3}}{2}.\]
2007 Romania Team Selection Test, 1
Let $\mathcal{F}$ be the set of all the functions $f : \mathcal{P}(S) \longrightarrow \mathbb{R}$ such that for all $X, Y \subseteq S$, we have $f(X \cap Y) = \min (f(X), f(Y))$, where $S$ is a finite set (and $\mathcal{P}(S)$ is the set of its subsets). Find
\[\max_{f \in \mathcal{F}}| \textrm{Im}(f) |. \]
2015 District Olympiad, 2
Determine the real numbers $ a,b, $ such that
$$ [ax+by]+[bx+ay]=(a+b)\cdot [x+y],\quad\forall x,y\in\mathbb{R} , $$
where $ [t] $ is the greatest integer smaller than $ t. $
2024-IMOC, N5
Find all positive integers $n$ such that
$$2^n+15|3^n+200$$
2024 Kyiv City MO Round 2, Problem 2
Mykhailo wants to arrange all positive integers from $1$ to $2024$ in a circle so that each number is used exactly once and for any three consecutive numbers $a, b, c$ the number $a + c$ is divisible by $b + 1$. Can he do it?
[i]Proposed by Fedir Yudin[/i]
2018 Yasinsky Geometry Olympiad, 3
In the tetrahedron $SABC$, points $E, F, K, L$ are the midpoints of the sides $SA , BC, AC, SB$ respectively, . The lengths of the segments $EF$ and $KL$ are equal to $11 cm$ and $13 cm$ respectively, and the length of the segment $AB$ equals to $18 cm$. Find the length of the side $SC$ of the tetrahedron.
2017 Korea Junior Math Olympiad, 3
Find all $n>1$ and integers $a_1,a_2,\dots,a_n$ satisfying the following three conditions:
(i) $2<a_1\le a_2\le \cdots\le a_n$
(ii) $a_1,a_2,\dots,a_n$ are divisors of $15^{25}+1$.
(iii) $2-\frac{2}{15^{25}+1}=\left(1-\frac{2}{a_1}\right)+\left(1-\frac{2}{a_2}\right)+\cdots+\left(1-\frac{2}{a_n}\right)$
LMT Guts Rounds, 14
Seongcheol has $3$ red shirts and $2$ green shirts, such that he cannot tell the difference between his three red shirts and he similarly cannot tell the difference between his two green shirts. In how many ways can he hang them in a row in his closet, given that he does not want the two green shirts next to each other?
2022 AMC 10, 2
Mike cycled $15$ laps in $57$ minutes. Assume he cycled at a constant speed throughout. Approximately how many laps did he complete in the first $27$ minutes?
$\textbf{(A) } 5 \qquad \textbf{(B) } 7 \qquad \textbf{(C) } 9 \qquad \textbf{(D) } 11 \qquad \textbf{(E) } 13$
2019 Math Prize for Girls Problems, 2
Let $a_1$, $a_2$, $\ldots\,$, $a_{2019}$ be a sequence of real numbers. For every five indices $i$, $j$, $k$, $\ell$, and $m$ from 1 through 2019, at least two of the numbers $a_i$, $a_j$, $a_k$, $a_\ell$, and $a_m$ have the same absolute value. What is the greatest possible number of distinct real numbers in the given sequence?
2014 Chile National Olympiad, 3
In the plane there are $2014$ plotted points, such that no $3$ are collinear. For each pair of plotted points, draw the line that passes through them. prove that for every three of marked points there are always two that are separated by an amount odd number of lines.
1984 Tournament Of Towns, (079) 5
A $7 \times 7$ square is made up of $16$ $1 \times 3$ tiles and $1$ $1 \times 1$ tile. Prove that the $1 \times 1$ tile lies either at the centre of the square or adjoins one of its boundaries .