This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 CMIMC, 6

There are $100$ lightbulbs $B_1,\ldots, B_{100}$ spaced evenly around a circle in this order. Additionally, there are $100$ switches $S_1,\ldots, S_{100}$ such that for all $1\leq i\leq 100$, switch $S_i$ toggles the states of lights $B_{i-1}$ and $B_{i+1}$ (where here $B_{101} = B_1$). Suppose David chooses whether to flick each switch with probability $\tfrac12$. What is the expected number of lightbulbs which are on at the end of this process given that not all lightbulbs are off?

2002 All-Russian Olympiad, 1

The polynomials $P$, $Q$, $R$ with real coefficients, one of which is degree $2$ and two of degree $3$, satisfy the equality $P^2+Q^2=R^2$. Prove that one of the polynomials of degree $3$ has three real roots.

1995 IMC, 4

Let $F:(1,\infty) \rightarrow \mathbb{R}$ be the function defined by $$F(x)=\int_{x}^{x^{2}} \frac{dt}{\ln(t)}.$$ Show that $F$ is injective and find the set of values of $F$.

2013 District Olympiad, 2

Let the matrices of order 2 with the real elements $A$ and $B$ so that $AB={{A}^{2}}{{B}^{2}}-{{\left( AB \right)}^{2}}$ and $\det \left( B \right)=2$. a) Prove that the matrix $A$ is not invertible. b) Calculate $\det \left( A+2B \right)-\det \left( B+2A \right)$.

1966 Miklós Schweitzer, 5

A "letter $ T$" erected at point $ A$ of the $ x$-axis in the $ xy$-plane is the union of a segment $ AB$ in the upper half-plane perpendicular to the $ x$-axis and a segment $ CD$ containing $ B$ in its interior and parallel to the $ x$-axis. Show that it is impossible to erect a letter $ T$ at every point of the $ x$-axis so that the union of those erected at rational points is disjoint from the union of those erected at irrational points. [i]A.Csaszar[/i]

2013 Purple Comet Problems, 10

Tags:
The number $N$ is the product of two primes. The sum of the positive divisors of $N$ that are less than $N$ is $2014$. Find $N$.

Kvant 2019, M2570

Pasha placed numbers from $1$ to $100$ in the cells of the square $10$ × $10$, each number exactly once. After that, Dima considered all sorts of squares, with the sides going along the grid lines, consisting of more than one cell, and painted in green the largest number in each such square (one number could be colored many times). Is it possible that all two-digit numbers are painted green? [i]Bragin Vladimir[/i]

2015 BMT Spring, 6

Consider the set $S = \{1, 2, . . . , 2015\}$. How many ways are there to choose $2015$ distinct (possibly empty and possibly full) subsets $X_1, X_2, . . . , X_{2015}$ of $S$ such that $X_i$ is strictly contained in $X_{i+1}$ for all $1 \le i \le 2014$?

2016 ASDAN Math Tournament, 12

Tags:
Find the number of real solutions $x$, in radians, to $$\sin(x)=\frac{x}{1000}.$$

2017 BMT Spring, 6

The center of a square of side length $ 1$ is placed uniformly at random inside a circle of radius $ 1$. Given that we are allowed to rotate the square about its center, what is the probability that the entire square is contained within the circle for some orientation of the square?

2014 Postal Coaching, 2

Let $O$ be the centre of the square $ABCD$. Let $P,Q,R$ be respectively on the segments $OA,OB,OC$ such that $OP=3,OQ=5,OR=4$. Suppose $S$ is on $OD$ such that $X=AB\cap PQ,Y=BC\cap QR$ and $Z=CD\cap RS$ are collinear. Find $OS$.

2010 District Olympiad, 3

Consider the cube $ABCDA'B'C'D'$. The bisectors of the angles $\angle A' C'A$ and $\angle A' AC'$ intersect $AA'$ and $A'C$ in the points $P$, respectively $S$. The point $M$ is the foot of the perpendicular from $A'$ on $CP$ , and $N$ is the foot of the perpendicular from $A'$ to $AS$. Point $O$ is the center of the face $ABB'A'$ a) Prove that the planes $(MNO)$ and $(AC'B)$ are parallel. b) Calculate the distance between these planes, knowing that $AB = 1$.

1954 Moscow Mathematical Olympiad, 286

Consider the set of all $10$-digit numbers expressible with the help of figures $1$ and $2$ only. Divide it into two subsets so that the sum of any two numbers of the same subset is a number which is written with not less than two $3$’s.

1984 Austrian-Polish Competition, 7

A $m\times n$ matrix $(a_{ij})$ of real numbers satisfies $|a_{ij}| <1$ and $\sum_{i=1}^m a_{ij}= 0$ for all$ j$. Show that one can permute the entries in each column in such a way that the obtained matrix $(b_{ij})$ satisfies $\sum_{j=1}^n b_{ij} < 2$ for all $i$.

2019 Purple Comet Problems, 19

Tags: geometry
Rectangle $ABCD$ has sides $AB = 10$ and $AD = 7$. Point $G$ lies in the interior of $ABCD$ a distance $2$ from side $\overline{CD}$ and a distance $2$ from side $\overline{BC}$. Points $H, I, J$, and $K$ are located on sides $\overline{BC}, \overline{AB}, \overline{AD}$, and $\overline{CD}$, respectively, so that the path $GHIJKG$ is as short as possible. Then $AJ = \frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

2021 New Zealand MO, 3

In a sequence of numbers, a term is called [i]golden [/i] if it is divisible by the term immediately before it. What is the maximum possible number of golden terms in a permutation of $1, 2, 3, . . . , 2021$?

2007 Abels Math Contest (Norwegian MO) Final, 1

We consider the sum of the digits of a positive integer. For example, the sum of the digits of $2007$ is equal to $9$, since $2 + 0 + 0 + 7 = 9$. (a) How many integers $n$, where $0 < n < 100 000$, have an even sum of digits? (b) How many integers $n$, where $0 < n < 100 000$, have a sum of digits that is less than or equal to $22$?

2011 Olympic Revenge, 1

Let $p, q, r, s, t \in \mathbb{R}^{*}_{+}$ satisfying: i) $p^2 + pq + q^2 = s^2$ ii) $q^2 + qr + r^2 = t^2$ iii) $r^2 + rp + p^2 = s^2 - st + t^2$ Prove that \[\frac{s^2 - st + t^2}{s^2t^2} = \frac{r^2}{q^2t^2} + \frac{p^2}{q^2s^2} - \frac{pr}{q^2ts}\]

2017 Tuymaada Olympiad, 1

Tags: algebra , function
Functions $f$ and $g$ are defined on the set of all integers in the interval $[-100; 100]$ and take integral values. Prove that for some integral $k$ the number of solutions of the equation $f(x)-g(y)=k$ is odd.\\ ( A. Golovanov)

2003 Romania Team Selection Test, 5

Let $f\in\mathbb{Z}[X]$ be an irreducible polynomial over the ring of integer polynomials, such that $|f(0)|$ is not a perfect square. Prove that if the leading coefficient of $f$ is 1 (the coefficient of the term having the highest degree in $f$) then $f(X^2)$ is also irreducible in the ring of integer polynomials. [i]Mihai Piticari[/i]

2015 HMNT, 2

Tags:
Consider a $2 \times 2$ grid of squares. David writes a positive integer in each of the squares. Next to each row, he writes the product of the numbers in the row, and next to each column, he writes the product of the numbers in each column. If the sum of the eight numbers he writes down is 2015, what is the minimum possible sum of the four numbers he writes in the grid?

2022 ELMO Revenge, 5

Tags: algebra
Let $f(x)=x+3x^{\frac 23}, g(x)=x+x^{\frac 13}$. Call a sequence $\{a_i\}_{i\ge 0}$ satisfactory if for all $i\ge 1, a_i\in \{f(a_{i-1}), g(a_{i-1})\}$. Find all pairs of real numbers $(x,y)$ such that there exist satisfactory sequences $(a_i)_{i\ge 0}, (b_i)_{i\ge 0}$ and positive integers $m$ and $n$, such that $a_0 =x$, $b_0 = y$, and $$|a_m-b_n|<1$$

2017 Saint Petersburg Mathematical Olympiad, 7

Given a convex polygon with vertices at lattice points on a plane containing origin $O$. Let $V_1$ be the set of vectors going from $O$ to the vertices of the polygon, and $V_2$ be the set of vectors going from $O$ to the lattice points that lie inside or on the boundary of the polygon (thus, $V_1$ is contained in $V_2$.) Two grasshoppers jump on the whole plane: each jump of the first grasshopper shift its position by a vector from the set $V_1$, and the second by the set $V_2$. Prove that there exists positive integer $c$ that the following statement is true: if both grasshoppers can jump from $O$ to some point $A$ and the second grasshopper needs $n$ jumps to do it, then the first grasshopper can use at most $n+c$ jumps to do so.

2009 Belarus Team Selection Test, 3

Let $n$ be a positive integer and let $p$ be a prime number. Prove that if $a$, $b$, $c$ are integers (not necessarily positive) satisfying the equations \[ a^n + pb = b^n + pc = c^n + pa\] then $a = b = c$. [i]Proposed by Angelo Di Pasquale, Australia[/i]

2024 BMT, 1

Tags: geometry
Andrew has three identical semicircular mooncake halves, each with radius $3,$ and uses them to construct the following shape, which contains an equilateral triangle in the center. Compute the perimeter around this shape, in bold below. [center] [img] https://cdn.artofproblemsolving.com/attachments/7/2/2314ac2d34cd0706f47bace3eedbb87a91582a.png [/img] [/center]